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Mapping abandoned agriculture with multi-temporal MODIS satellite data
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Agriculture is expanding and intensifying in many areas of the world, but abandoned agriculture is also be-
coming more widespread. Unfortunately, data and methods to monitor abandoned agriculture accurately
over large areas are lacking. Remote sensing methods may be able to fill this gap though, especially with
the frequent observations provided by coarser-resolution sensors and new classification techniques. Past ef-
forts to map abandoned agriculture relied mainly on Landsat data, making it hard to map large regions, and
precluding the use of phenology information to identify abandoned agriculture. Our objective here was to
test methods to map abandoned agriculture at broad scales with coarse-resolution satellite imagery and phe-
nology data. We classified abandoned agriculture for one Moderate Resolution Imaging Spectroradiometer
(MODIS) tile in Eastern Europe (~1,236,000 km2) where abandoned agriculture was widespread. Input
data included Normalized Difference Vegetation Index (NDVI) and reflectance bands (NASA Global MODIS
Terra and Aqua 16-Day Vegetation Indices for the years 2003 through 2008, ~250-m resolution), as well as
phenology metrics calculated with TIMESAT. The data were classified with Support Vector Machines
(SVM). Training data were derived from several Landsat classifications of agricultural abandonment in the
study area. A validation was conducted based on independently collected data. Our results showed that it
is possible to map abandoned agriculture for large areas from MODIS data with an overall classification accu-
racy of 65%. Abandoned agriculture was widespread in our study area (15.1% of the total area, compared to
29.6% agriculture). We found strong differences in the MODIS data quality for different years, with data
from 2005 resulting in the highest classification accuracy for the abandoned agriculture class (42.8%
producer's accuracy). Classifications of MODIS NDVI data were almost as accurate as classifications based
on a combination of both red and near-infrared reflectance data. MODIS NDVI data only from the growing-
season resulted in similar classification accuracy as data for the full year. Using multiple years of MODIS
data did not increase classification accuracy. Six phenology metrics derived with TIMESAT from the NDVI
time series (2003–2008) alone were insufficient to detect abandoned agriculture, but phenology metrics im-
proved classification accuracies when used in conjunction with NDVI time series by more than 8% over the
use of NDVI data alone. The approach that we identified here is promising and suggests that it is possible
to map abandoned agriculture at broad scales, which is relevant to gain a better understanding of this impor-
tant land use change process.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Agricultural change is a key component of Land Use and Land Cover
Change (LULCC; Foley et al., 2005; Goldewijk & Ramankutty, 2004;
Haberl et al., 2007; Leff, Ramankutty, & Foley, 2004; Tilman et al., 2001,
Tilman, 1999). As of 2005, more than 38% of the Earth's land surface
was either in row crops or grazed (Food and Agriculture Organization
of the United Nations, 2010). Cropland alone has increased rapidly dur-
ing the last centuries, occupying 3–4 million km2 in 1700 and 15–

18 million km2 in 1990 (about 12% of the global land surface) (Lambin
& Geist, 2006; Leff et al., 2004). However, in recent decades, total area
of agriculture stabilized or even decreased in several parts of the
world; especially in the temperate zone (Lambin &Geist, 2006). Such re-
duction of total area of agriculture resultedmainly in abandoned agricul-
ture, and sometimes concomitant increase in forest area (Kauppi et al.,
2006; Millennium Ecosystem Assessment, 2005; Rudel et al., 2005).
While agricultural expansion and associated deforestation are relatively
well-documented though (Lambin & Geist, 2006), much less is known
about thepatterns, causes and the environmental consequences of aban-
doned agriculture (Aide & Grau 2004; Cramer, Hobbs, & Standish, 2008;
Rey Benayas, Martins, Nicolau, & Schulz, 2007; Vandermeer & Perfecto,
2007).
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Properly defining abandoned agriculture is not easy. Because aban-
doned agricultural areas are in transition, the land use change is with-
out fixed patterns, and often non-linear (Lambin & Meyfroidt, 2011a,
b). Abandoned agriculture is the result of a land owner's decision to re-
duce the intensity of use of land for agriculture (including grazing) for
an undetermined period of time; based on either natural, socioeco-
nomic, or personal constrains. The decision to abandon an agricultur-
al area can precede the actual abandonment by months or even years,
depending on the type of agricultural use, and evenmore time can ex-
pire before abandoned agriculture can be detected via remote sens-
ing. Vice versa, fallow periods are part of the typical crop rotation
cycle, making it difficult to ascertain if a field has been truly aban-
doned or is just awaiting future use. However, as more time expires,
it becomes more obvious that a field is abandoned, especially if
shrubs and trees start to grow on former fields, since woody plants
make it increasingly costly to start agricultural use again, and farmers
will typically avoid woody growth on their fields.

Satellite imagery can provide independent and consistent data to
map LULCC such as agricultural abandonment, if abandonment re-
sults in a unique land cover type or a unique land cover change trajec-
tory (Fassnacht, Cohen, & Spies, 2006, Lu, Mausel, Brondizios, &
Moran, 2004). In terms of its vegetation cover, abandoned agriculture
follows a broadly repeatable progression of recovery from short-lived
herbaceous species to longer-lived woody species such as shrubs and
trees in areas where forests can grow. Ecologists call this trajectory,
i.e., the recovery of forest growth after disturbance, succession. Suc-
cession occurs after any type of disturbance, and agricultural land
use is simply a particularly severe form of disturbance in this context.
However, while the general trajectory of succession is fairly predict-
able, the rate of succession, and the species composition at each
stage of succession are highly dependent on prior land use and the
colonization dynamics of both native and exotic species, which in
turn, are strongly affected by the land use patterns in the surrounding
of the abandoned agricultural field. Pre-disturbance plant communi-
ties are unlikely to recover if the legacy of cultivation is such that nu-
trient and water cycles are permanently altered, and the vegetation is
highly fragmented (Cramer et al., 2008).

From a remote sensing perspective, the land use process of agri-
cultural abandonment can be mapped in two ways. The first is change
detection, in which case abandoned agriculture represents areas that
are initially agriculture and successional grassland, scrubland or for-
est at a later point (Baumann et al., 2011, Kuemmerle et al., 2008,
Prishchepov et al. in review), but this requires imagery dating back
to the time before abandonment. The second approach is to map
areas with fallow grasslands that have woody growth, since such
areas are transitional in zones where forests represent the potential
natural vegetation. In other words, agricultural land abandonment is
a land use process, and abandoned agriculture is a unique land
cover type that results from abandonment. Our research here was fo-
cused to address the question: What kind of data, and from how
many years and image dates, are needed to correctly map abandoned
agriculture as a unique land cover type?

For the purpose of our study, we thus defined abandoned agricul-
ture as areas that (1) had been previously used either for row crops,
hay cutting, or as grazing lands, (2) are no longer in use, (3) have
not been used for a time period longer than fallow periods under typ-
ical crop rotations, and (4) are characterized by woody growth that
has started to appear as a result of natural succession. Other land
use change processes that lead to the loss of agricultural land, such
as urban development, were not considered abandoned agriculture
under this definition. Based on this definition, we mapped those
areas that showed a specific spectral and phenological signature
that corresponds to regrowth of woody vegetation on fields that
had been previously used for agriculture including grazing.

Agricultural abandonment is not a new phenomenon. Expansion
and contraction of the agricultural land area has been common

since the origins of agriculture (Ellis, Goldewijk, Siebert, Lightman,
& Ramankutty, 2010, Ramankutty & Foley, 1999). However, recently,
agriculture abandonment rates have risen globally (Kauppi et al.,
2006), especially in parts of North America (Klooster, 2003,
Ramankutty, Heller, & Rhemtulla, 2010,), Europe (Baumann et al.,
2011; Kuemmerle et al., 2008; Müller et al., 2009) and South America
(Aide, Zimmerman, Herrera, Rosari, & Serrano, 1995; Farley, 2007).
Most recently agricultural abandonment has occurred in temperate
regions, but also in tropical countries such as Puerto Rico (Grau et
al., 2003), Mexico (Klooster, 2003), Ecuador (Farley, 2007), Honduras
(Redo, Joby Bass, & Millington, 2009), Panama (Sloan, 2008), and
Vietnam (Meyfroydt & Lambin, 2008). However, reliable data on
abandonment are missing for most countries (Herold, Mayaux,
Woodcock, Baccini, & Schmullius, 2008; Lepers et al., 2005;
Ramankutty et al., 2007).

Robust data on agricultural abandonment is important to obtain
though, because abandonment has strong environmental implica-
tions, affecting, for example, soil stability, carbon sequestration,
water quality and nutrient cycling (MacDonald et al., 2000; Moreira
& Russo, 2007; Ramankutty et al., 2007; Stoate et al., 2001). Environ-
mental benefits of agricultural abandonment can include less pollu-
tion by agricultural chemicals (Lesschen, Cammeraat, Kooijman, &
Van Wesemael, 2008), and the creation of new wildlife habitat
(Chauchard, Carcaillet, & Guibal, 2007; Russo, 2007). However, agri-
cultural abandonment can also increase the risk of natural hazards
(Romero-Calcerrada & Perry, 2004) and alter water resources
(Poyatos, Latron, & Llorens, 2003). In economic and social terms, agri-
cultural abandonment decreases food production, and threatens tra-
ditional landscapes, their cultures and the biodiversity connected to
these landscapes (Dutch National Reference Center for Agriculture,
Nature and Food Quality, Latvian Ministry of Agriculture, & Latvian
State, 2005). Furthermore, interest in abandoned agricultural land is
rapidly growing in light of a looming land scarcity due to the rapidly
increasing demand for food, fiber and biofuel (Foley et al., 2011;
Lambin & Meyfroidt, 2011a,b).

Because of the importance of abandonment as a land use change
process, remote sensing has been widely used to map it. In the United
States of America, remote sensing has focussed on mapping the aban-
doned agriculture from the Conservation Reserve Program (Egbert,
Lee, Price, & Boyce, 1998; Egbert et al., 2002; Park & Egbert, 2008).
In Europe, studies that mapped abandoned agriculture from satellite
imagery were conducted in Italy (Falcucci, Maiorano, & Boitani,
2007), Denmark (Kristensen, Thenail, & Kristensen, 2004), Estonia
(Peterson & Aunap, 1998), Belarus and Lithuania (Prishchepov et al.,
in review), and the Carpathians (Kuemmerle et al., 2008; Kuemmerle,
Kozak, Radeloff, & Hostert, 2009, Baumann et al., 2011). In Asia, a
study mapped abandoned agriculture in the Siberian part of Russia
(Bergen et al., 2008). All of these investigations used Landsat images
from multiple dates, separated at least by three years, and employed
change detection algorithms to identify areas that were initially in agri-
cultural use, and no longer used at a later point in time.

While these Landsat-based studies highlight that abandoned agri-
culture can be accurately mapped with satellite imagery, they also
point to some shortcomings of current approaches. First, past efforts
to map abandoned agriculture were spatially limited to relatively
small case studies that cannot be easily compared because of different
change detection algorithms, classification schemes, abandonment
definitions, and images dates (Prishchepov et al., in review). Second,
past efforts used typically one or two Landsat images for a given
year. This is potentially limiting, because mapping abandoned agri-
culture is inherently complex. Even at fine resolution it is not easy
to discriminate whether or not an area was actively farmed in a
given year when looking only at one or two points in time during
one growing period. However, it is possible to improve the classifica-
tion accuracy by analyzing multitemporal data, especially data cap-
tured early and late during the growing period (Baumann et al.,
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2011; Prishchepov et al., in review). The Landsat archive is now freely
available, and that opens new opportunity to analyze Landsat time-
series. However, the availability of cloud-free images is often limited
and that makes it difficult to compile large image composites for mul-
tiple dates during the growing period.

Differences in phenology are key to separate abandoned agriculture
from agricultural areas that remain in use. A recent study suggests that
three Landsat images per year, both pre- and post-abandonment, are
necessary to achieve classification accuracies up to 80%, but sufficient
cloud free images are often not available (Prishchepov et al., in review).
Landsat imagery may thus not be the best data source to map
abandoned agriculture for large areas. In contrast, coarse-resolution satel-
lite imagery may offer advantages in terms of both spatial and temporal
coverage with their ability to capture phenology (White et al., 2008;
Xiao, Hagen, Zhang, Keller, & Moore, 2006; Zhang, Friedl, Schaaf, &
Strahler, 2005), but their ability to map abandoned agriculture has not
been tested.

The most common satellite sensors used to map LULCC at broad scale
have been the Advanced Very High Resolution Radiometer (AVHRR), the
VEGETATION sensor aboard Satellite Pour l'observation del la Terre
(SPOT), and the Moderate Resolution Imaging Spectroradiometer
(MODIS, Friedl et al., 2002, Fensholt & Sandholt, 2005). MODIS has two
bands that can be used to map abandoned agriculture and are spectrally
equivalent to the Landsat bands for red and near infra-red, but at 250-m
resolution. Additionally, phenology metrics, such as start, end, middle
and length of the growing period over broad scale images have been
used to map land cover with good results (Jacquin, Sheeren, & Lacombe,
2010). Abandoned agriculture has a distinct phenological profile

compared to other land-cover types. Abandoned agriculture maintains a
highNDVI value longer during the growing period than active agricultural
lands and grasslands, but not as long as young andmature forests (Fig. 1).
However, it is not clear how temporally high- but spatially coarse-
resolution satellite imagery can be best analyzed to map abandoned
agriculture.

Land-cover classifications from MODIS-type imagery are typically
most accurate when using non-parametric, machine-learning algo-
rithms, such as neural networks (Justice et al., 2002), or decision
trees (Friedl & Brodley, 1997). Among the machine learning algo-
rithms, support vector machines (SVMs) have shown particular
promise when applied to Landsat data (Hermes, Frieauff, Puzicha, &
Buhmann, 1999, Kuemmerle et al., 2009), including agricultural aban-
donment classifications (Kuemmerle et al., 2008, Prishchepov et al., in
review). For broad-scale mapping SVMs have been used successfully
to predict Gross Primary Productivity (GPP) for the conterminous
U.S. (Yang et al., 2007). However, coarse-resolution land-cover classi-
fication with SVMs are rare, although a case study classifying land
cover from MODIS in Portugal shows promises (Goncalves, Carrão,
Pinheiro, & Caetano, 2005).

Our goal here was to evaluate which combination of satellite and
phenological data results in the best classification of abandoned agri-
culture at broad scales with coarse-resolution MODIS vegetation
index (VI, 250 m) satellite imagery using SVMs as a classification
method. Specifically, we tested different combinations of near-
infrared (NIR) and red reflectance data, normalized difference vegeta-
tion indices (NDVI) data, and phenology metrics in order to map
abandoned agriculture.

Fig. 1. Examples of MODIS NDVI time-series for the main land cover types that we classified for study area. We selected 10 pure pixels for each land cover type, according to our
Landsat classifications, and verified the land cover type based on Google Earth imagery. The dotted envelopes represent the maximum and minimum NDVI values at each point in
the time-series.
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2. Methods

2.1. Eastern Europe study area

We classified MODIS VI 250-m resolution data from 2003 to 2008
to detect abandoned agriculture in the Baltic countries, Belarus and
Poland (Fig. 2a and b). The study area encompassed 12,364,340 km2,
the extent of one MODIS tile (h19-v03) covering the entire area of
Lithuania, Latvia, Estonia and Belarus, 77.4% of Poland, 18.4% of Ukraine,
8.4% of CzechRepublic, and 2.1%of Russia (however, the Russianportion
of the study area, including Kaliningrad, was larger than Poland)
(Fig. 2b). This part of Eastern Europe was ideal for our study questions,
because abandoned agriculture became widespread after the collapse
of the USSR (Kuemmerle et al., 2008, Prishchepov et al., in review,
Charles, 2010; Nikodemus, Bell, Grine, & Liepins, 2005; Peterson &
Aunap, 1998).

The entire study area was glaciated several times and the Last Gla-
cial Maximum was approximately 20,000 years ago. As a result, topo-
graphic variation is low (0–290 m) (Zeeberg, 1998). The dominant
soils in the study area are arenosols, phaeozems, fluvisols, cambisols
and luvisols. Podzols, which are poorly suited for agriculture, are
widespread in the region as well, especially in the north. The climate
is characterized by moist, cloudy, and cool summers and relatively
mild winters. Frost free periods range from 150 to 179 days in the
northeast to 210 to 240 days in the south. Average temperatures in
July are 20 to 25 °C and average temperature in January is −3 to
−5 °C. Annual precipitation ranges from 500 mm in central Poland
to 900 mm in the mountains between Poland and the Czech Republic.
Forests are boreal in the north (dominant tree species include Pinus
sylvestris, Picea abies, and Betula spp.) and temperate in the south
(dominant tree species include Quercus spp., P. sylvestris, and P. abies).

The majority of the agricultural abandonment in the study area
occurred during the 1990s, right after the collapse of the USSR
(Prishchepov et al., in review). MODIS data are only available after
2001 though, and can thus not be used for actual change detection

(i.e., the mapping of areas that were farmed during USSR times and
covered by secondary succession later). Instead, we used the MODIS
data to map abandoned agriculture, i.e., areas covered by secondary
succession such as grasses that were neither mowed nor grazed,
shrubs, and in some cases young trees. Whether or not these areas
were indeed farmed during the USSR regime (pre-1991) was verified
with 1980s Landsat imagery for a sample of sites (see below).

2.2. Input data for the classifications

We based all of our classifications on the two MODIS Vegetation
Indices datasets (MODIS Terra and Aqua VI) 16-Day L3 Global Col-
lection 5.0 (MOD13Q1 and MYD13Q1) from January 1, 2003 to De-
cember 31, 2008 (231.65 m resolution, or 5.36 ha). Data was
retrieved from the Land Processes Distributed Active Archive Center
(LP DAAC, http://lpdaac.usgs.gov) on August 31, 2009. The com-
bined MODIS VI dataset includes weekly reflectance, NDVI, and
quality data. We analyzed 250-m 16-day red reflectance data, 250-
m 16-day near-infrared reflectance data, and 250-m 16-day normal-
ized difference vegetation index (NDVI) data, each of which is avail-
able for 46 dates per year, from both Terra and Aqua datasets.

To identify the best year or years for our analysis, we examined
the amount of MODIS Nadir BRDF (bidirectional reflectance distribu-
tion function) adjusted reflectance data available in different quality
classes in each year for the red and infrared bands (Science Data
Sets for MODIS Terra+Aqua BRDF/Albedo Quality 16-Day L3 Global
500-m SIN Grid V005, MCD43A2). Because of limited availability of
usable data (categories 1–3) for the early years of the MODIS data re-
cord, we restricted our analysis to 2003–2008. Furthermore, 2005 and
2006 were the years with the most reflectance data in the ‘best’ qual-
ity category, and this is why we focused in some of our tests on these
two years.

Phenology metrics can improve land-cover classifications from
coarse-resolution satellite imagery (Jacquin et al., 2010). To identify
whether or not phenology metrics can be used to map abandoned

Fig. 2. Map of the study area in Eastern Europe. a) The most accurate MODIS classification based on growing period MODIS NDVI data for 2005 plus all phenology metrics obtained
from MODIS NDVI from 2003 to 2008; b) Location of the study area within Europe (in orange); and c) Landsat footprints from where we selected training and validation data (in
purple). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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agriculture we calculated eleven phenology metrics for each year.
Phenology metrics are descriptive data of the growing period, calcu-
lated from fitted functions for each year of the NDVI time-series.
The use of a fitting function smooths the data, thereby reducing
noise and ensuring data consistency. We used the program TIMESAT
to smooth the raw NDVI time series data and to calculate eleven phe-
nology metrics for each year of the time series (Jonsson & Eklundh,
2004):

1. Start of the growing period: week of the year at which the left
edge of the fitting function increased to 20% of the full amplitude
of the growing period (i.e., the difference between the minimum
NDVI, starting from the beginning of the year and the largest
NDVI value of the fitting function);

2. End of the growing period: week of the year at which the right
edge of the fitting function decreased to 20% of the amplitude of
the growing period;

3. Length of the growing period: time in weeks between the start
and the end of the growing period;

4. Base level: mean of minimum NDVI values before the start and
after the end of the growing period;

5. Middle of the growing period: the mean (week) of the two
weeks year at which the left edge of the fitted function has in-
creased to the 80% level, and the right edge has decreased to
the 80% level;

6. Maximum NDVI value for the fitted function during the growing
period;

7. Amplitude of the growing period: difference between the base
level NDVI value and the largest NDVI values of the fitted function
(in NDVI values);

8. Rate of increase at the beginning of the growing period: ratio of
the difference between the left 20% and 80% levels and the
corresponding time difference in weeks (in NDVI values/Time
(weeks));

9. Rate of decrease at the end of the growing period: Absolute value
of the ratio of the difference between the right 20% and 80% levels
and the corresponding time difference in weeks (in NDVI values/
Time (weeks));

10. Large growing period integral: the area under the curve of the
fitting function from the start to the end of the growing period;

11. Small growing period integral: the area under the curve of the
fitting function between the start and the end of the growing pe-
riod starting from the base level of the growing period.

NDVI values in the fitted function ranged from −3000 to 10,000
with a scale factor of 0.00001. We defined the growing period as
starting on day 129 (May 9th, or May 8th on leap years) and ending
on day 297 (October 24th, or October 23rd in leap years) based on ini-
tial TIMESAT results.

2.3. Training data for the classifications

Training data were extracted from land-cover maps that had been
previously derived for three Landsat scenes: 186/022, 188/022 and
182/025 path/row (Worldwide Reference System, version 2)
(Fig. 2c). Two of the Landsat land-cover classifications mapped land
abandonment between 1989 and 1999 in parts of Lithuania and Rus-
sia. The overall accuracy was 92.6% for the classification of Landsat
scene 186/022 (path/row) and 84.1% for the classification of 188/
022 and between 80% and 91% accuracy for abandoned agriculture
(Prishchepov et al., in review). The third Landsat scene was 182/025
and mapped abandonment between 1986 and 2000 around Cherno-
byl, Ukraine with an overall accuracy of 80.43% and 50% for agricul-
tural abandonment (Hostert et al., 2011). The classification scheme
included eight classes (Abandonment, Cropland, Grassland, Decidu-
ous Forest, Needle-leaved Forest, Regrowth, Water, and Other Clas-
ses). Unfortunately, the dates of these two Landsat classifications

did not match the MODIS data record exactly, but these were the clas-
sifications that were closest to the MODIS data in time, and classifying
additional Landsat images as input for MODIS classifications was be-
yond the scope of our study.

We summarized the percentage of each land-cover class in grid
cells within 500-m resolution. The 500-m cells fully encompassed
one 250-m pixel, leaving 125 m around the edges to account for loca-
tion uncertainty in the MODIS VI data (Tan et al., 2006). For training
purposes, we used 1459 cells with at least 90% dominance in one
land-cover class. Training data was grouped into four classes: aban-
doned (157 cells), agriculture (444, both plowed fields and managed
grasslands), forest (307, including deciduous, coniferous and mixed),
and other (551, including water, urban, and wetlands) (Fig. 2c).

2.4. Classification algorithm, and classification tests

All land-cover classes exhibited multi-modal or non-normal re-
flectance distributions in our training data. In the case of abandoned
agriculture, for example, areas covered by grasses versus young
trees resulted in multi-modal distributions. We thus applied a non-
parametric classifier, support vector machines (SVM) (Huang, Davis,
& Townshend, 2002), to classify the MODIS data, since SVM do not re-
quire normally distributed training data.

SVM are a supervised computer learning method that can analyze
and classify high‐dimensional datasets. SVM employ non-parametric
optimization algorithms to locate optimal boundaries between clas-
ses. SVM are superior to traditional classifiers and equivalent to
other learning methods such as neural networks and decision trees
(Huang et al., 2002). The principle behind SVM is called structural
risk minimization (SRM). The risk of a learning machine (R) is bound-
ed by the sum of empirical risk estimated from training samples
(Remp) and a confidence interval (Ψ):

R≤Remp þΨ:

An SRM keeps the empirical risk (Remp) constant and minimizes
the confidence interval (Ψ), or maximizes the margin between a sep-
arating hyperplane and the closest data points. SVM fit an optimal
separating hyperplane for each two classes of the training data in a
multi-dimensional feature space. Boundaries are optimized to ex-
clude outliers by minimizing errors among all possible boundaries
separating the classes and minimizing confusion between classes.
For linearly not separable classes, the input data are mapped into a
higher dimensional space using an algorithm based on Lagrange mul-
tipliers and a kernel function.

Using SVM requires defining both a parameter for the kernel func-
tion (g) to map the input data into the higher dimensional space, as
well as a regularization parameter (C) that is needed during the
fitting of the hyperplane to the training data. The C parameter limits
the influence of the training samples, whereas the kernel parameter
g is a lower bound on the fraction of support vectors and an upper
bound on the fraction of margin errors. The kernel parameter g de-
fines the width of the Gaussian kernel function (or radial basis func-
tion, RBF), which implicitly transforms the classification problem
into an infinite feature space. The Gaussian kernel is a so-called uni-
versal kernel, and a SVM with Gaussian kernel function can separate
any class distribution at any precision. Once these parameters have
been defined, the quadratic optimization applied during the training
will always find the optimal solution and results are fully
reproducible.

SVM are a binary classifier, i.e., they always separate two classes
only. The strategy that we selected to conduct our MODIS classifica-
tions was the one-against-all strategy (OAA), where a set of binary
classifiers is trained to separate each class from the rest; the maxi-
mum decision value determines the final class label.
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The software package that we used was ImageSVM, programmed
in IDL (Janz, van der Linden, Waske, & Hostert, 2007). SVMs are pow-
erful classifiers, but different input time-series can result in different
classifications accuracies. We therefore conducted 22 classifications
and evaluated 10 questions to assess which subset of input from our
pool of weekly red and near infrared MODIS time-series, weekly
NDVI time-series, and annual phenology metrics resulted in the
most reliable classification of abandoned agriculture (Table 1).
These questions were:

1. Are near-infrared and red reflectance time-series better suited
than NDVI time-series to map abandoned agriculture? This test
was conducted with single-year time-series for the growing peri-
od only for both 2005 and 2006. We derived two classifications
per year (one with red and near infrared time-series as input,
one with NDVI time-series).

2. Do specific single-year growing period NDVI time-series provide
better classification results than others? We classified growing
period only NDVI time-series for each single year from 2003 to
2008.

3. Do time-series from the full year result in better classifications
than time-series from the growing period only? We conducted
four classifications for the year 2006: two using red and near-
infrared reflectance time-series (one using all 46 images for the
whole year, and one with 22 images for the growing period
only) and two using NDVI time-series (one using 46 images and
one with 22 images).

4. Does classification accuracy increase when using time-series
from multiple years compared to single-year time-series? We
conducted six classifications with growing period NDVI time-
series: the first three were with single-year classifications for
2004, 2005 and 2006 respectively, the fourth used time-series
for 2005 and 2006, the fifth used time-series for 2004 and 2006,
and the sixth used time-series from all three years.

5. Do phenologymetrics result in higher classification accuracies than
NDVI time-series to map abandoned agriculture? We conducted
seven classifications: the first classificationwas based on the eleven
phenology parameters calculated for the full 2003–2008 NDVI
time-series. Classifications two to seven included phenology

parameters from a single year of growing period NDVI time-series
for 2003, 2004, 2005, 2006, 2007, and 2008 respectively.

6. Do phenology metrics result in higher classification accuracies
when used in conjunction with single-year growing period
NDVI time-series? We conducted four classifications: classifica-
tions one and two included single-year growing period NDVI
time-series for 2005 and 2006 respectively. Classifications three
and four included the eleven phenology metrics calculated on
the full (2003–2008) time series and single-year growing period
NDVI time-series for 2005 and 2006, respectively.

7. Do phenology metrics from a time series of six years result in
higher classification accuracies than phenology metrics from a
time series of three years? We conducted four classifications:
classifications one and two included the eleven phenology met-
rics from the full (6-year, 2003–2008) time series of NDVI data
as well as single-year growing period NDVI time-series for 2005
and 2006, respectively. Classifications three and four included
the same eleven phenology metrics calculated for a three-year
(2004–2006) time series as well as single-year growing period
NDVI time-series for 2005 and 2006, respectively.

8. Do phenology metrics based on the full time-series result in
higher classification accuracies than phenology metrics based
on single-year time-series? We conducted four classifications:
classifications one and two included the phenology metrics
from the full time series (2003–2008) as well as single-year
growing period NDVI time-series for 2005 and 2006, respectively.
Classifications three and four included phenology metrics based
on the full time‐series but single year period phenology metrics
from 2005 and 2006 respectively plus their single-year growing
period NDVI time-series for 2005 and 2006, respectively.

9. Are all eleven phenology metrics necessary or does it suffices to
use a subset of the phenology metrics? We conducted two classi-
fications: classification one included all eleven phenology metrics
calculated from the 2004–2006 NDVI time series, as well as
single-year growing period data for 2005. Classification two in-
cluded only six phenology parameters (End of the growing peri-
od, start of the growing period, base level, maximum level,
length of the growing period and middle of the growing period),
with everything else equal to classification one.

Table 1
Conducted classifications, datasets included on each classification and comparisons made to find a suitable subset to map abandoned agriculture. The “x” in the “Included years”
columns indicate the date or dates of the time-series included in the classification; the “X” indicates that both, the NDVI time-series and the Phenology metrics for that year,
were included in the classification. The “x” in the “Addressed question” columns indicates the classification or classifications that were included to address each question.

Dataset Bands Included years Addressed question Coded name

2003 2004 2005 2006 2007 2008 1 2 3 4 5 6 7 8 9 10

NDVI (one year, growing period) 22 x x x NDVI2003
NDVI (one year, growing period) 22 x x x x NDVI2004
NDVI (one year, growing period) 22 x x x x x x NDVI2005
NDVI (one year, growing period) 22 x x x x x x x NDVI2006
NDVI (one year, growing period) 22 x x x NDVI2007
NDVI (one year, growing period) 22 x x x NDVI2008
NDVI (two years, growing period) 44 x x x NDVI20042005
NDVI (two years, growing period) 44 x x x NDVI20042006
NDVI (three years, growing period) 66 x x x x NDVI200420052006
NDVI (one full year) 46 x x NDVI2006all
Red and near infrared (one year, growing period) 44 x x REDNIR2005
Red and near infrared (one year, growing period) 44 x x x REDNIR2006
Red and near infrared (one year, full year) 92 x x REDNIR2006all
Phenology (11 metrics, 6 years) 66 x x x x x x x Ph0308
NDVI (one year, growing period)+phenology (11 metrics, 6 years) 88 x x x X x x x x x NDVI2006ph0308
NDVI (one year, growing period)+phenology (11 metrics, 6 years) 88 x x X x x x x x x NDVI2005ph0308
NDVI (one year, growing period)+phenology (11 metrics, 3 years) 55 x x X x NDVI2006ph0406
NDVI (one year, growing period)+phenology (11 metrics, 3 years) 55 x X x x x NDVI2005ph0406
NDVI (one year, growing period)+phenology (11 metrics, 1 year) 33 X x NDVI2005ph0308_05
NDVI (one year, growing period)+phenology (11 metrics, 1 year) 33 X x NDVI2006ph0308_06
NDVI (one year, growing period)+phenology (6 metrics, 3 years) 40 x X x x x NDVI2005ph0406S
NDVI (one year, 5 selected dates)+phenology (6 metrics, 1 year) 11 x x SNDVI05ph0406S_05
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10. Are NDVI time-series from the entire growing period necessary or
do NDVI images from a few dates within one year result in similar
classification accuracies? We conducted two classifications: one
classification included phenology metrics from the 2004–2006
NDVI time series, as well as the 2005 growing period NDVI
time-series, and the second classification included the same phe-
nology metrics, but only five selected NDVI images (first week of
March, April, June, August, and October respectively).

2.5. Validation data

Independent validation data were collected for a stratified random
sample in five Landsat footprints within the study area (Fig. 2c). Two
Landsat images for each footprint were obtained from United States
Geological Survey (USGS; http://glovis.usgs.gov), the first for the
late 1980s and the second for either 2005 or 2006. To select pixels
for validation, we used a grid of MODIS pixels with 2500-m distance
between pixels to minimize spatial autocorrelation. Using the 2005
MODIS land-cover classification for stratification we selected 99
MODIS pixels for each of the four land-cover classes. The resultant
MODIS pixels were interpreted visually using both Landsat images and,
where available, high-resolution QuickBird images in GoogleEarth™.
We recorded the dominant land-cover class for each pixel in 2005/06
and, in the case of abandoned agriculture, if the pixelwas actively farmed
in the late 1980s.

We generated an area-adjusted confusion matrix (Card, 1982;
Stehman, 1996) for each classification and calculated the overall ac-
curacy expressed by the kappa coefficient of agreement, the propor-
tion of pixels correctly allocated, and the user's and producer's
accuracy for each class.

Comparing classifications based on their kappa coefficient alone is
not recommended, and statistical tests are necessary to properly
judge if differences in classification accuracy are significant (Foody,
2004). We used McNemar tests to evaluate the statistical significance
of the observed differences in the classification accuracies (De Leeuw
et al., 2006; Foody, 2004). These tests are designed to evaluate differ-
ences among proportions that are not independent and have been
widely used in remote sensing (Foody, 2009). The McNemar tests
allowed us to compare all pair-wise combinations of any two maps
using the same validation dataset. We calculated z-scores to allow
testing if two classifications were significantly different at α=0.05
if z=|1. The z-score was calculated by normalizing the differences
in the off diagonal of the cross-tabulation by:

z ¼ V10−V01
V10 þ V01

Based on the statistical significance of the differences among the
22 classifications, we derived a hierarchical clustering distance den-
drogram for each of the above questions.

3. Results

The best classification resulted from the growing period data for
2005 plus all phenology metrics from 2003 to 2008, with an overall
area-adjusted accuracy of 69% (Interval 62.1–75.2), and for the aban-
doned agriculture class the lowest omission and commission area-
adjusted errors (57.2% and 59.1% respectively), and the best
producer's (42.7%) and user's (40.9%) area-adjusted accuracy. Based
on this classification the land-cover class distribution was 29.6% agri-
culture (65.4% of producer's and 84.4% of user's area-adjusted accura-
cy), 33.8% forest (77.2% of producer's and 71.7% of user's area-
adjusted accuracy), 15.1% abandoned agriculture, and 21.5% other
land covers (85.1 of producer's and 63.2 of user's area-adjusted accu-
racy) (Table 2).

3.1. Classification tests

In terms of the 22 tested input datasets, the differences in the
resulting classifications were small in most cases. Opposite but incon-
clusive results were found when comparing red and near-infrared re-
flectance data versus NDVI data. We compared two different years
(2005 and 2006). For the year 2005, NDVI data performed better
than red and near-infrared reflectance data (Fig. 3 Q1). When we
compared classification accuracies for single years, all classifications
for different years based on the growing period NDVI data resulted
in kappa values over 61%, except 2004. The best classifications
resulted from years 2003, 2005 and 2008 with overall accuracies
over 62%; the years 2006 and 2007 resulted in classifications of slight-
ly over 61% accuracy, and only 2004 resulted in a classification with
overall accuracy slightly over 59% (Fig. 3 Q2). For the 2006, NDVI
data resulted in slightly lower kappa values compared to the red
and near-infrared reflectance data (Fig. 3 Q1), but the difference be-
tween NDVI and reflectance data-based classification accuracies was
minor (Table 3).

Based on theirMcNemar scores, we found that classifications for sin-
gle years from 2005 to 2008 were not significantly different from each
other, but there were weak differences between all classifications and
2004 (Table 3, Fig. 4). Comparison between data for the entire year
(2006) versus data for the growing period showed also only minor dif-
ferences (Table 3, Fig. 3 Q3). Kappa values for the growing period were
slightly higher for both red and near-infrared reflectance data and NDVI
data (Fig. 3), but they were not significantly different from each other
(Table 3). Classifications for 2005 were part of the sameMcNemar clus-
ter (i.e., they were statistically not significantly different in terms of
their accuracy, Fig. 4, cluster 4) whereas classifications for 2006 were
part of a different McNemar cluster (Fig. 4, cluster 2).

When we compared classification accuracies for the entire grow-
ing period (2005) versus data for five selected dates in 2005 we
found no significant differences. Kappa values for the five selected
dates' classification showed slightly lower kappa values than the clas-
sification for the growing period and both classifications were part of
the same McNemar cluster (Fig. 3 Q10).

Table 2
Error matrix of the classification with the best kappa error (NDVI for 2005, plus phenology data for 2003–2008). In bold font and located in the major diagonal of the error matrix
are the number of sampled units correctly classified. Total sampled units for each class are highlighted in bold – italicized; in the columns the reference data are represented and in
the rows the classification categories generated by the remotely sensed data.

Area (km2) Reference

Agriculture Forest Abandoned Ag. Other classes Total

Classification Agriculture 365,820 103 7 8 4 122
Forest 417,750 12 81 18 2 113
Abandoned agriculture 186,890 32 18 38 5 93
Other classes 265,970 14 8 3 43 68
Total 1,236,430 161 114 67 54 396
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When we combined 2005 and 2004 growing period NDVI time-
series, the classification accuracy stayed the same, but the use of
2004 plus 2006 time-series improved the classification. Similarly,
the use of three years' time-series, from 2004 to 2006, did improve
classification accuracy compared to the use of only two years of
data (Fig. 3 Q4), but differences were not significant (Table 3). All
classifications involving multiple years were part of the same
McNemar cluster (Fig. 4, cluster 4).

Our tests of phenology metrics data showed the worst classifica-
tion accuracies when we classified the phenology metrics alone
(Fig. 3 Q5). However, combining phenology metrics with multiple-
year NDVI data for the growing period did improve the classifications
substantially (Fig. 3 Q6). Classifications that included both NDVI data
and phenology metrics yielded five out of the six best classifications.
The best performing out of all the 21 classifications conducted includ-
ed all the phenologymetrics from 2003 to 2008 plus the NDVI data for

Fig. 3. Classification accuracies (Kappa values) for the classifications resulting from the different time-series. The charts represent our 10 questions to show which input data
resulted in higher accuracies when mapping agricultural abandonment. Q1. NDVI versus red near-infrared; Q2. Individual years; Q3 Growing-season-only versus entire-year
data. Q4 Multiple years; Q5. Phenology metrics versus NDVI time-series. Q6 Phenology metrics and NDVI time-series. Q7 NDVI time-series for six years versus time-series for
three years. Q8. The full time series of phenology metrics versus phenology metrics time-series for single years. Q9 Eleven phenology metrics versus six phenology metrics. Q10
Growing period time-series versus selected NDVI dates. The name of each classification consists of five components: (1) type of input data, either normalized difference vegetation
index (NDVI), phenology metrics (ph), or red and near-infrared reflectance data (REDNIR); (2) the year(s) of the input data (from 2003 to 2008); (3) whether the whole year (all)
or only data from the growing period (without the “all” suffix) were considered; (4) whether only one year of phenology metrics, either 2005 (_05), 2006 (_06) was used or only a
subset of 5 out of 11 phenology metrics (sel) was used; and (5)The inclusion of only 5 selected NDVI dates for first week of March, April, June, August, and October (the prefix S).
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2005 (Fig. 3 Q7). However, classifications that included phenology
metrics for only one year based on a time series from 2003 to 2008
did not improve the performance of the classifier significantly
(Fig. 3 Q8). Similarly, the inclusion of phenology metrics based on
data from 2004 to 2006 resulted only in a minor improvement. Last
but not least, the inclusion of all eleven phenology metrics versus
the use of only five parameters made very little difference, and
resulted in almost identical maps (Table 3, Fig. 3 Q9).

3.2. Mapping abandoned agriculture

In terms of the spatial patterns of the land-cover classes, all eight
countries that were fully or partially included in our study area

exhibited abandoned agriculture (Fig. 5). The parts of Russia and
Belarus that we mapped had the largest shares of abandoned agricul-
ture of all the countries with 27.6% and 20.8% of their land area respec-
tively. Three countries had 10–20% of abandoned agriculture (Ukraine
(16.9%), Latvia (12.4%), and Estonia (11.7%)), and three countries had
less than 10% (Lithuania (9.5%), Czech Republic (4.6%), and Poland
(4.0%)) (Fig. 5).

In terms of forest, four countries had around 50% of their land cov-
ered by forest (Estonia (52.6%), Latvia (52%), and the portions
mapped of Russia (51.4%) and Czech Republic (49.4%)). Three coun-
tries had around 30% of the land covered by forest (Belarus (36.3%),
Lithuania (31.5%), and Ukraine (29%)). In contrast, Poland had only
21.3% of the land covered by forest (Fig. 5).

Table 3
Significance of the differences in accuracies among our 22 MODIS classifications. Results are organized by McNemar significance test. There is no significant difference within each
hierarchical cluster (McNemar).
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NDVI2005ph0308 ** ** ** ** ** ** * * ** ** **** *** ** *** *** **** **** **** **** ****

REDNIR2006all **** *** ** ** *** **

NDVI2006all ** *** ** *

REDNIR2006 ** *** *

NDVI2008 ** *** *

NDVI2006 ** *** *

SNDVI05ph0406S_05 ** *** **

NDVI2005ph0308_05 ** **** ** * * ** *

NDVI2006ph0308 * **** ** * ** **

NDVI2006ph0308_06 * *** ** * *

NDVI2005ph0406sel ** *** ** * ** ** *

NDVI2005ph0406 ** *** ** * ** ** *

Ph0308 **** **** *** *** *** *** *** **** **** *** *** *** ** ** ** ** * * *

NDVI2003 *** **

NDVI2006ph0406 ** **

REDNIR2005 *** **

NDVI2007 *** **

NDVI2004 **** *** ** * * * ** ** ** ** ** **

NDVI200420052006 **** ** * * * * *

NDVI2005 **** ** * ** ** *

NDVI20042005 **** *** * ** ** * ** **

NDVI20042006 **** ** * ** * * * *
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In terms of the relative areas mapped as agriculture, Poland had the
most (66.8%) followed by Lithuania, Ukraine, Czech Republic, and Belarus
(48.3%, 45.5%, 38.6% and 32.1% respectively). Latvia and Estonia were the
countries with the least agriculture (24.4% and 18.0% respectively).

3.3. Validation

According to our validation data, 51 out of 67 of sampling points
(76.12%) that we classified as abandoned agriculture from the
MODIS imagery from 2005/06 were indeed farmed in the late 1980s
and in an early successional stage by 2005/06. Only 16 sampling
points out of the 67 (23.88%) were not agriculture in the late 1980s,
but already covered by shrubs then. These may represent either per-
manent shrublands or pre-1980s abandoned agriculture, but we
could not assess which of these two were more common.

All classifications had kappa values above 51% (Fig. 3). Using the
McNemar test as distance metric for a hierarchical clustering, we
found four significantly different clusters of classifications (Fig. 4,
Table 3). The best performing classification was in cluster one,
which included only one classification (2005 NDVI growing period
data plus phenology metrics from 2003 to 2008). Cluster two

included eleven classifications with intermediate results, subdivided
into two subgroups: one with four classifications based on data
from 2006, a classification based on data from 5 selected 2005 NDVI
dates and 2005 phenology metrics from 2004 to 2006 and one with
NDVI data from 2008. The second subgroup had five classifications
and all of the classifications in the second group of cluster two includ-
ed phenology metrics (Table 1, Fig. 4). The classification with best
performance for cluster two included red and near infrared 2006
data for the whole year (Kappa value of 66%).

Cluster three, with one map, had the worst accuracy. This classifi-
cation included only phenology metrics from 2003 to 2008 (Table 1,
Fig. 4). Cluster four was composed by nine classifications with
kappa values from 59.8 to 63.1% (Figs. 3 and 4). Cluster four included
four classifications based on growing period NDVI data for one year
(years 2003, 2004, 2005, and 2007), and three classifications that in-
cluded NDVI data for two and three years (2004, 2005, 2006 and the
combinations among them). In comparison with the nine classifica-
tions included in cluster four, the classification for 2005 NDVI grow-
ing period data had slightly better results, followed by the growing
period NDVI data for 2003 and then growing period NDVI data for
years 2004–2006. The last two classifications in cluster four utilized
either red and near-infrared reflectance data for the 2005 growing
period, or NDVI data for 2006 plus phenology metrics based on data
from 2004 to 2006 (Table 1, Fig. 4).

4. Discussion

Our results showed that it is possible to map abandoned agricul-
ture for large areas using MODIS 250-m data with overall accuracies
of about 65%. This result was similar to the accuracies reported for
other equally complex MODIS-based land-cover classifications
(Clark, Aide, Grau, & Riner, 2010; Jin & Sader, 2005; Spruce et al.,
2011). Abandoned agriculture was widespread in our study area, cov-
ering approximately 15% of the land. When comparing this number to
the remaining 30% of land in agriculture, we deduce that about 45% of
the area was farmed in the 1980s and a third of those areas were
abandoned. Our validation data showed that a clear majority (> 75%)
of the areas mapped as abandoned agriculture were indeed actively
farmed during the 1980s, highlighting how rapid the abandonment
process was in the first two decades after the collapse of the USSR.

Classification errors of the abandoned agriculture class largely oc-
curred due to confusion with the agriculture class. This was likely due
to two reasons. The first reason is spatial proximity; many abandoned
agriculture areas were intermixed with still active agriculture. During
socialism, the decision which crops to plant was made for large areas
and in 5-year plans for entire regions. After the collapse of the USSR,
landownership became more fragmented, the decision whether to
continue cultivation or not was made individually, and fields were
often much smaller than in socialist times. The second reason for clas-
sification errors are the MODIS gridding artifacts that cause changes
in the spectral information reported for a given MODIS pixel over
time (Tan et al., 2006). The inherent limitations of the MODIS data
thus make it difficult to map abandoned agriculture, but our results
are encouraging. Based on our results, we suggest that mapping aban-
doned agriculture is challenging but the use of MODIS a valid option
when mapping at regional to global scales. Mapping abandoned agri-
culture regularly with MODIS could highlight areas of rapid change,
and suggest where to conduct more detailed classifications with
finer-resolution satellite data.

It was also encouraging to see that the rates of abandonment that
we found were in close agreement with more localized studies that
have used Landsat images to map abandoned agriculture and also
with statistical data. In Russia, the reported declines of arable land
based on official statistics reached 20% due to the transition to a mar-
ket economy (Ioffe & Nefedova, 2004). Of the 127 million ha of farm-
land in the early 1980s, 20 to 30 million were no longer used by the

Fig. 4. Hierarchical clustering of the classifications resulting from the different sets of
input data using McNemar test values as the distance metric. The best classification is
marked with a # and the worst classification is marked with a ##. Clusters represent
classifications that were statistically more similar and are indicated by gray lines that
separate the McNemar Cluster Groups. Dotted lines represent the threshold at which
there is a significant difference at a p-value of >0.10: *, >0.05–0.10: **, >0.01–0.05:
***, >0.001–0.01: ****. The name of each classification has five components: 1) type of
input data, either normalized difference vegetation index (NDVI), phenology metrics
(ph), or red and near-infrared reflectance data (REDNIR); 2) the year or years of the
input data (from 2003 to 2008); 3) the inclusion of the entire year (all); or data only
for the growing period (classification names without the “all” suffix); 4) the classifica-
tions with only one year of phenology metrics, either 2005 (_05), 2006 (_06) or only a
subset of 5 out of 11 phenology metrics (sel); and 5) the inclusion of only 5 selected
NDVI dates for first week of March, April, June, August, and October (the prefix S)
respectively.
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early 2000s (Franks & Davydova, 2005; Ioffe, Nefedova, & Zaslavsky,
2004; Ioffe, 2005). Similarly, the Landsat based classifications of aban-
donment covering 5% of our study area (see above) had 37.5% agricul-
ture, 33.4% forest, and 18% abandonment respectively (compared to
30% agriculture, 34% forest, 15% abandoned agriculture, and 21%
other land cover that we found for the entire MODIS tile).

We conducted numerous comparisons to identify the optimal
input data for mapping abandoned agriculture and these comparisons
provided interesting results. The use of near-infrared and red reflec-
tance data instead of NDVI data did not improve the classification ac-
curacy significantly according to the McNemar tests. In other words,
NDVI data captured the information necessary to classify abandoned
agriculture as well as the near-infrared and red reflectance data.
Since there was no significant difference in the classifications
obtained from NDVI and near-infrared and red reflectance data, we
recommend the use of NDVI data to classify abandoned agriculture,
reducing the data volume by 50%.

We also did not find that a certain year resulted in significantly
more accurate classifications of abandoned agriculture. The early
years (2003–2004) had lower accuracies, but that may be due to
later dates of our training and validation data. The fact that there
was not a clear best year to map abandoned agriculture was encour-
aging, and suggests that the best quality data that is closest in time to
the training and validation datasets will provide the best results. In
our case the best year was 2005.

The use of data for the entire year instead of growing-period-only
data also did not make a significant difference in our results. Entire-
year data resulted in better overall accuracies than growing-period-
only data, but this finding was not statistically significant. We recom-
mend the use of growing-period data to conduct classifications on
abandoned agriculture reducing the data volume to 22 images for a
growing period instead of the 46 for the whole year.

The inclusion of a second year of MODIS data did improve classifi-
cation accuracies, and it did matter if the two years were contiguous.
We recommend the inclusion of at least two years of NDVI data close
to the dates of the validation and training data to conduct classifica-
tions on abandoned agriculture. If only two years are included, we
recommend including two years that are not immediately subsequent
(in our case 2004 and 2006), which can help to avoid falsely classify-
ing temporarily fallow fields as abandoned.

The use of phenology metrics alone resulted in our worst classifi-
cation, but coupled with NDVI growing period data, the phenology
metrics resulted in our best classification (i.e., for 2005 growing-
period data plus phenology metrics). We thus recommend the inclu-
sion of phenology metrics when mapping abandoned agriculture. Six
phenology metrics captured the information necessary to classify
abandoned agriculture just as well as all eleven phenology metrics.
This is why we recommend the use of only six metrics (End of the
growing period, start of the growing period, base level, maximum
level, length of the growing period and middle of the growing period)
coupled with NDVI data, reducing the data volume by 45%. The six
phenology metrics that were most important also made biological
sense. For instance, the start of the period was important because
shrublands and forest green up earlier than agricultural areas,
which typically green up after being plowed and sowed (in the case
of summer crops). Equally important was the end of the growing pe-
riod, because agricultural areas senesced earlier than other land-
cover types, crops were harvested, and land was plowed and pre-
pared for the next year. In contrast, shrubland areas exhibited a
later end of the growing period. The maximum NDVI value during
the growing period was important as well, since active agricultural
areas showed higher values than all other classes. The length of the
growing period was longest for forests and shorter for shrublands
and abandoned agriculture. The middle of the growing period, as

Fig. 5. Land-cover class distributions for each country based on the best classification, which resulted from the growing-seasonMODIS NDVI data for 2005 plus all phenology parameters
obtained from MODIS NDVI data from 2003 to 2008.
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calculated by TIMESAT, helped to discriminate abandoned agricultur-
al land from actively used croplands since agriculture had an earlier
growing period. Base level helped to discriminate other classes such
as urban and water bodies from forest, shrublands, and agricultural
abandoned land.

The limited number of statistically significant different classifica-
tions highlighted the importance of using the McNemar test when
comparing multiple maps. Raw accuracies alone can be misleading
because higher accuracies for one classification over another may
not be statistically significant. Hierarchical cluster dendrograms
offer an easy way to visualize multiple McNemar comparisons,
which facilitate the analysis and selection of classifications to be
used for other purposes.

In terms of the patterns of abandoned agriculture, our study area
covered eight Eastern European countries either in parts, or in their
entirety. Lithuania, Latvia, Estonia, and Belarus were entirely mapped
and more than 75% of Poland was mapped, making it possible to com-
pare them. In Poland, only a small amount of agriculture was aban-
doned after the collapse of the USSR. Abandoned agriculture areas
were concentrated in protected areas in the north of the country,
and in places in the South where economical activities shifted from
agriculture to industry in the south. In Latvia and Estonia, abandoned
agriculture was widespread, covering in 2005 about 39% of what was
agriculture in the 1980s. Given similar historical processes for all
three Baltic countries, it was somewhat surprising that Lithuania
had less abandoned agriculture than Latvia and Estonia (only 16% of
what was formerly agriculture was abandoned agriculture by 2005).
However, both Latvia and Estonia had more forest than Lithuania.
Also, economic growth patterns differed among the three countries;
Lithuania had one of the fastest growing economies of the European
Union, compared with Latvia which was one of the poorest econo-
mies of the European Union. Both Latvia and Estonia have also been
hit hard by the economic crises that started in 2008–2009. Those eco-
nomic differences may have resulted in less abandoned agriculture in
Lithuania compared to Latvia and Estonia. In the case of Belarus, aban-
doned agriculture reachedmore than39%of the areas thatwere agricul-
ture in the 1980s. However Belarus' economy is still state-controlled,
and industrial production plunged in the early 1990s because of de-
creases in imported inputs, in investment, and in demand for exports
from traditional trading partners. Of all the countries, the part of Russia
that we analyzed had the most abandoned agriculture: more than 75%
of the areas thatwere used for agriculture in the 1980swere abandoned
according to our analysis.

Our findings confirmed that abandoned agriculture is widespread
in Eastern Europe, but abandonment is not unique to Eastern Europe.
It is necessary to conduct similar studies worldwide to understand
the pattern of abandoned agriculture, and its environmental, social,
and food production trade-offs and opportunities. Land abandonment
can be a consequence of socio-economic and environmental changes,
as well as the results of new hazards, and technology. The reasons for
land abandonment can range from changes in land tenure to the sim-
ple “recovery” that a landowner decides to give to a field to allow soils
to replenish and nutrients to recover. The process of land abandon-
ment can be abrupt, in which case the land is no longer used, or grad-
ual, e.g., when grazing replaces the production of crops or fields are
used only every second or third year. After abandonment, different
successional pathways can occur depending on prior land uses, and
the environmental conditions of the land.

Reductions in agricultural production can have negative social and
economic implications, but they can also provide an opportunity for
conservation and environmental protection (Young et al., 2005).
Given the strong ramifications of agricultural abandonment, and the
potential role of these lands to relax pressure from natural ecosys-
tems elsewhere (Lambin & Meyfroidt, 2011a,b) mapping and moni-
toring abandoned farmland should be a top research priority. We
identified approaches here to map abandoned agriculture at broad

scales, which is important given the paucity of reliable data on aban-
doned agriculture.
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