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Forest cover change is one of the most important land cover change processes globally, and old-growth for-
ests continue to disappear despite many efforts to protect them. At the same time, many countries are on a
trajectory of increasing forest cover, and secondary, plantation, and scrub forests are a growing proportion
of global forest cover. Remote sensing is a crucial tool for understanding how forests change in response to
forest protection strategies and economic development, but most forest monitoring with satellite imagery
does not distinguish old-growth forest from other forest types. Our goal was to measure changes in forest
types, and especially old-growth forests, in the biodiversity hotspot of northwest Yunnan in southwest
China. Northwest Yunnan is one of the poorest regions in China, and since the 1990s, the Chinese government
has legislated strong forest protection and fostered the growth of ecotourism-based economic development.
We used Landsat TM/ETM+ and MSS images, Support Vector Machines, and a multi-temporal composite
classification technique to analyze change in forest types and the loss of old-growth forest in three distinct
periods of forestry policy and ecotourism development from 1974 to 2009. Our analysis showed that logging
rates decreased substantially from 1974 to 2009, and the proportion of forest cover increased from 62% in
1990 to 64% in 2009. However, clearing of high-diversity old-growth forest accelerated, from approximately
1100 hectares/year before the logging ban (1990 to 1999), to 1550 hectares/year after the logging ban (1999
to 2009). Paradoxically, old-growth forest clearing accelerated most rapidly where ecotourism was most
prominent. Despite increasing overall forest cover, the proportion of old-growth forests declined from 26%
in 1990, to 20% in 2009. The majority of forests cleared from 1974 to 1990 returned to either a non-
forested land cover type (14%) or non-pine scrub forest (66%) in 2009, and our results suggest that most
non-pine scrub forest was not on a successional trajectory towards high-diversity forest stands. That
means that despite increasing forest cover, biodiversity likely continues to decline, a trend obscured by
simple forest versus non-forest accounting. It also means that rapid development may pose inherent risks
to biodiversity, since our study area arguably represents a “best-case scenario” for balancing development
with maintenance of biodiversity, given strong forest protection policies and an emphasis on ecotourism
development.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Land cover and land use change are the main causes of biodiversi-
ty declines (Chapin et al., 2000; Foley et al., 2005; Vitousek et al.,
1997), and old-growth forests are among the most threatened
habitats globally. Old-growth forests are economically valuable for
timber (Chazdon et al., 2009) and as agricultural land (Gibbs et al.,
2010; Perfecto and Vandermeer, 2010), and they continue to
+1 608 262 9922.
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disappear despite many efforts to protect them. Most of the remain-
ing high-diversity old-growth forests are located in developing coun-
tries (Myers et al., 2000; Zimmerer et al., 2004), which are
undergoing rapid development and population growth. High biodi-
versity often occurs in the same areas where people dwell
(Naughton-Treves et al., 2005), and our understanding of how to bal-
ance livelihoods and conservation is still limited (Ferraro et al., 2011).

However, while old-growth deforestation continues, more and
more countries have undergone a forest transition, i.e., a change in
forest trajectory from decreasing to increasing forest cover
(Meyfroidt and Lambin, 2011; Meyfroidt et al., 2010). Forest transi-
tion theory assumes that as a country develops, its forest trajectory
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follows an environmental Kuznets curve, i.e., the environment first
worsens but then improves as incomes rise (Mather et al., 1999).
While the opportunities of returning forests are substantial (Kauppi
et al., 2006; Rudel, 2009; Rudel et al., 2005), increasing forest cover
alone does not necessarily mean that biodiversity and natural ecosys-
tems are on a pathway towards recovery. Secondary forests are not
equal to old-growth forest in terms of biodiversity, carbon storage,
and ecosystem service provision (Chazdon, 2008; Perfecto and
Vandermeer, 2010; Rudel, 2009) and do not always return to high-
diversity ecosystems (Chazdon et al., 2009).

As old-growth forests dwindle and new forests proliferate, two
key challenges are to 1) identify effective protection strategies for
remaining old-growth forests, and 2) understand the fate and impli-
cations of the increasing area of new forests. The key to both is to
monitor forest change dynamics over broad spatial and temporal
scales in response to different protection strategies, government pol-
icies, and economic development.

Remote sensing is a crucial tool for forest cover change mapping
and monitoring. Mapping old-growth forest distribution (Congalton
et al., 1993) and post-disturbance forest succession (Cohen et al.,
1995; Fiorella and Ripple, 1993; Jakubauskas, 1996) have long been
recognized as essential components of forest biodiversity assessment,
and in recent years, multiple forest classes have been mapped even in
extremely complex and little-studied environments (Helmer et al.,
2000; Liu et al., 2002; Schmook et al., 2011).

However, detailed forest type classifications are usually performed
for only a single time period, because there are formidable challenges
associated with mapping change for multiple classes over several
time-steps. First, using single-date classifications to detect change
(i.e. post-classification change detection analysis) over multiple
time-steps is problematic because errors multiply over each timestep
(Kennedy et al., 2009). Composite change detection minimizes
multiplicative error by stacking multi-date imagery together and
classifying change directly. However, change classes typically have
non-normal distributions. For example, even though deforested
areas transition to grassland, agriculture, bare land, or shrub, all are
included into a single “deforestation” class, and most classification
techniques are ill suited to handle such complex class distributions.

Recently, non-parametric classification techniques, such as deci-
sion trees (Hansen et al., 2008; Potapov et al., 2011) have been tested
for composite change detection because they can accommodate the
non-normal and multi-modal distributions of multi-date imagery.
The major disadvantage of non-parametric techniques for composite
change detection is that they typically perform better with training
datasets that provide a complete and representative sample of the
classes (Pal and Mather, 2003). In composite change detection, over-
all change class numbers increase exponentially with each added land
cover class, and adequate training data for rare land cover classes over
multiple time-steps are difficult to acquire (Kennedy et al., 2009).

Support Vector Machines (SVM) are an alternative non-
parametric classifier that offer particular promise for change detec-
tion of multiple forest classes because they can handle complex distri-
butions of multi-temporal imagery (Huang et al., 2002), but they do
not require training datasets that completely describe each class.
SVM place hyperplanes to separate different classes, and only training
points at the class boundaries are necessary for optimal hyperplane
placement (Foody and Mathur, 2004). Therefore, SVM can perform
effectively with a small sample of “mixed pixels” collected from
purposefully selected locations (Foody et al., 2006).

Our overarching goal was to use remote sensing to map different
forest types and forest loss in complex environments in order to un-
derstand processes affecting high-diversity forest types. Our study
area was Diqing Prefecture of northwest (NW) Yunnan Province in
the Himalayan mountains of southwest China, a global biodiversity
hotspot (Myers et al., 2000) and rapidly developing region. Home to
the most biologically diverse temperate forests in the world (Morell,
2008), and historically relatively undisturbed (Goodman, 2006),
large expanses of NW Yunnan's old-growth forests were clear-cut
by state logging companies from the 1960s through the 1990s to
fuel China's national development (Harkness, 1998; Morell, 2008)
and the logging industry dominated the local economy (Melick et
al., 2007).

However, in response to catastrophic flooding along the Yangtze
River, in 1998 the Chinese government instituted the National Forest
Protection Plan (NFPP). One of the primary objectives of the NFPP was
to ban logging of all forests in southwest China, except for small
quotas allowed to local people for non-commercial uses (e.g. con-
struction materials and fuelwood). Furthermore, since the 1990s
China has invested heavily in reforestation programs (Liu et al.,
2008) and ecotourism (Jenkins, 2009; Kolas, 2008). As a result, forest
cover in SW China is increasing (Weyerhauser et al., 2005), but fine-
scale studies indicate that old-growth forests continue to be logged
(Melick et al., 2007; Xu and Melick, 2007; Zackey, 2007) and the eco-
logical integrity of the new forests is unclear (Liu et al., 2008; Xu,
2011).

Using remote sensing to map forest change is a logical first step to-
wards understanding the consequences of forest protection and eco-
nomic development policies since the 1980s in SW China. However,
remote sensing in the region is challenging. Because of the monsoonal
climate, clouds cover the region during the growing season, but win-
ter image analysis is challenged by snow cover, illumination effects
from topography, and senescent vegetation. Furthermore, the collec-
tion of ground truth data is difficult because topography is extremely
rugged and roads are few, aerial photos are not freely available, and
different forest types are difficult to separate visually in either Land-
sat or high resolution imagery.

To overcome these challenges, and to understand complex
processes of forest change in our study area, we used SVM, multi-
temporal Landsat TM/ETM+ satellite imagery, purposefully selected
ground truth data, and a combined post-classification and composite
change detection technique to map multiple classes of forest cover
and change in NW Yunnan from 1974 to 2009. Our specific objectives
were to:

1. Map multiple forest classes and forest loss for the historical period
(1974–1990), the decade before the logging ban (1990–1999) and
the decade after the logging ban (1999–2009).

2. Assess the spatial and temporal patterns of logging in relation to
geographic, demographic, and economic factors.

3. Determine overall forest cover change, and types of forest that
have regenerated.

2. Study region

Our study area (22,834 km²) was the Diqing Tibetan Autonomous
Prefecture in the Hengduan Mountains of northwest (NW) Yunnan
Province, bordering Tibet and Sichuan Province (Fig. 1a). Elevations
in the study area range from 1500 to 6000 m above sea level
(Fig. 1b), creating a large array of ecological niches in a relatively
small area. Forest cover in our study area has been estimated at 60%
(Weyerhauser et al., 2005), but the high-diversity old-growth forests,
which are the primary conservation target in this biodiversity
hotspot, are just a fraction of the total forest cover. The old-growth
montane conifer and mixed forests are the most biologically diverse
temperate forests globally (Morell, 2008). Over 7000 plant, 410
bird, and 170 mammal species have been documented in NW
Yunnan, many of which are endemic to native old-growth forests
(Chang-Le et al., 2007; Ma et al., 2007; Xu and Wilkes, 2004).
Among the different land cover types, the old-growth forest commu-
nity is richer in endemic, endangered and culturally useful species
than any other land cover types (Anderson et al., 2005; Li et al.,
2008; Ma et al., 2007; Salick et al., 2007; Wang et al., 2008; Wen et
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Fig. 1. Location of study area, and important spatial patterns in the study area. a) Location of study area, Diqing Prefecture, in Northwest Yunnan, China, b) elevation, c) population
density, d) road density, and e) annual disturbance rate trends by township for the Historic (1974–1990), Pre-ban (1990–1999) and Post-ban (1999–2009) periods.
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al., 2003), and is essential habitat to the endangered Yunnan snub-
nosed monkey (Li et al., 2008; Wen et al., 2003), and to several rare
species of pheasants (Wang et al., 2008).

NW Yunnan is also an UNESCO world heritage site because of its
centuries-long history of indigenous subsistence cultures, including Ti-
betan, Lisu, Bai, Naxi, and Yi peoples. Historically, the regionwas sparsely
populated (approximately 15 people/km2), with a decreasing popula-
tion gradient from the lower-elevation South to the higher, harsher-
climate North (Fig. 1c). Most people live at a subsistence level, relying
heavily on forests for their livelihoods. Forests are still the primary source
of fuel for cooking, heating, and construction, and are intensively used for
livestock grazing, hunting, food gathering, and traditional medicines.
Old-growth trees are especially valuable to Tibetans, as large logs are re-
quired to construct traditional Tibetan houses.

NW Yunnan is one of China's poorest regions, making it a primary
target of economic development programs since the 1980s, including
the Great Western Development program in 1998, which emphasizes
infrastructure development, ecological rehabilitation, foreign
economic investment, and education throughout western China (Xu
et al., 2006). Furthermore, tourism development in NW Yunnan's nat-
ural areas has been promoted as a strategy for both environmental
protection and economic development (Li and Han, 2000; Wang
and Buckley, 2010).
3. Methods

3.1. General approach

We used Landsat MSS/TM/ETM+images and a multi-temporal
change classification technique to map forest cover and change in
NW Yunnan from 1974 to 2009. We focused on the classification of
forest cover loss and of three biologically distinct forest types. A
field-derived training dataset and multi-temporal Landsat imagery
(Fig. 2) enabled accurate classification of the three different forest
classes. We performed a combination of composite and post-
classification change detection, using multi-temporal imagery from
four different time periods (1974, 1990, 1999 and 2009) to quantify
land cover/land use change during three intervals (1974–1990,
1990–1999, and 1999–2009) (Fig. 3). One composite change classifi-
cationmapped forest types and forest loss in the ‘Historic’ time period
(1974–1990), and another mapped forest types and forest loss in
both the ‘Pre-ban’, i.e., the decade before the logging ban
(1990–1999), and ‘Post-ban’, i.e., the decade following the logging
ban (1999–2009) periods. We then performed post-classification
change detection from the two composite change classification to
identify which types of forests were logged in the Pre-ban and Post-
ban periods, and to measure what was the share of total forest



Fig. 2. Examples of how phenology was used to discriminate the different forest classes. Representative pixels from the three forest classes look similar under visual inspection on
Landsat images from a) November 20, 1990 and b) April 13, 1991, but c) spectral plots (Landsat bands 1 to 6) show that different forest types vary in their response to winter
drought, enabling discrimination between forest types with multi-temporal imagery.

Fig. 3. Description of how multi-temporal imagery was used in a combined composite and post-classification change detection approach.
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Table 2
The number of ground truth polygons and pixels in each class.

Land cover class Polygons Pixels

Old-growth forest 396 18,664
Pine/oak woodland 184 9713
Non-pine scrub 329 24,149
Deforestation — historic 51 5442
Deforestation pre-ban 85 3435
Deforestation post-ban 81 3970
Agriculture 141 5710
Grassland 98 2244
Alpine shrub expansion 41 1826
Sparse shrub 78 12,198
Bare/urban 45 2063
Other 44 3886
Total 1573 93,300
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cover in 2009 that had been logged in the Historic period. The three
forest types were:

(a) Old-growth forests represent the main target of biodiversity
conservation in this region (Chang-Le et al., 2007; Ma et al.,
2007; Xu and Wilkes, 2004). We define old-growth forests as
the native, original forest vegetation community of this region.
The old-growth forest community is composed of mixed ever-
green and deciduous species, including fir (Abies spp.), spruce
(Picea spp.), pine (Pinus spp.), larch (Larix spp.), evergreen
oak (Quercus spp.), birch (Betula spp.) and rhododendron
(Rhododendron spp.) with specific species composition highly
related to topographic variability (Li and Walker, 1986). The
vast majority of this category consists of the old-growth forest
vegetation community in its climax state, but also includes
this community in its secondary state, because the primary
and secondary states are spectrally indistinguishable with our
Landsat imagery because of the similarity in species
composition.

(b) Pine/oak woodlands can occur naturally in NW Yunnan, and
often colonize and persist in cleared areas after a disturbance
(Li and Walker, 1986), but many pine forests have been planted
after logging. In our study area, old-growth pine/oak woodlands
are rare, and existing pine forests are typically homogeneous
stands of young pines (Pinus densata)with oak shrub understory.

(c) Non-pine scrub represents a mix of deciduous and evergreen
shrublands that regenerate and persist following logging. This
forest type is especially common near villages and along
roads, where forests are heavily used by livestock and people.
Based on interviews with local people, many scrub forests
have persisted for many decades after logging.

3.2. Satellite images

The study area is covered by two Landsat TM image footprints
(path/row 132/040 and 132/041). We used a total of 14 images
(Table 1), all from late October through early April, because cloud
free images are not available during the growing season in this region
due to the monsoonal climate. Images were obtained from the USGS
Landsat archives and from the China and Thai International Ground
Stations. We georeferenced all images to the Landsat 2000 GeoCover
Dataset using ERDAS IMAGINE AutoSync, which was already orthor-
ectified, and used a gap-filled Digital Elevation Model (DEM) from
the Shuttle Radar Topography Mission (SRTM) to account for relief
displacement. Root mean square error for the georeferencing was
less than 0.4 pixels (b12 m). Clouds and cloud shadows were masked
manually from the images prior to all image analyses. We did not
apply any other pre-processing of the images.

3.3. Field data

Field data for training and validation were collected during six
months of field work, from September to November of 2008, and August
to October of 2009. We sampled at least 40 locations for each land cover
class to aid the interpretation of spectral subclasses during image analy-
sis. The ground truth dataset consisted of 1573 polygons containing
93,300 pixels (Table 2). Due to the ruggedness of the study area, a ran-
dom sampling designwas not feasible. Ground truth data for uncommon
Table 1
Images used for the analysis.

Time period

ca. 1974 ca. 1990

Landsat Sensor MSS TM TM
Acquisition date 1/5/1974 11/20/1990 4/13/1991
classes, such as old-growth forests, required extensive trekking in re-
mote locations.We hired local villagers to guide us to old-growth forests,
alpine pastures, and areas of logging, and while trekking we conducted
interviews with our guides about land use history and practices. We
recorded land use and land cover observations and took photographs
for an approximate 100×100 m area surrounding each GPS point
(Justice and Townshend, 1981). We collected points for both “pure
pixels” (i.e., homogeneous areas of a single land cover type), as well as
“mixed pixels”, (i.e. areas were a mixture between land cover types pre-
vails) to aid the SVM in hyperplane placement.

We supplemented field data with ground truth data from high res-
olution imagery available in Google Earth™, which covered approxi-
mately one-third of the study area, and the Landsat imagery. For the
forest type classes, we relied entirely on field data, since these classes
cannot be distinguished reliably based on visual inspection of single-
date satellite imagery alone. For forest loss classes, approximately 60%
of training data were derived from field data, and approximately 40%
were selected by visual interpretation of the Landsat imagery. We
identified forest loss classes in the field by visiting areas of past log-
ging, and asking our local guide when the logging had occurred.
Similarly, approximately 20% of the training areas for agriculture,
grassland, sparse shrub, and bare/urban classes were collected from
the high resolution imagery, and 80% in the field.

3.4. Change detection

We used Support Vector Machines (SVM), implemented in the
software imageSVM (Janz et al., 2007), for our change detection. To
train and validate our SVM, we used a random selection of approxi-
mately 1000 points from each class in our ground truth dataset. We
performed a classification for the Historic period (1974–1990) by
combining 1974 Landsat MSS images, ca. 1990 Landsat TM images,
and elevation and hillshade from the DEM. The hillshade for the ‘His-
toric’ classification was calculated with a sun elevation angle of
34.04°, and a sun azimuth angle of 146.62° (corresponding to the No-
vember 19th 1990 Landsat TM image (Path/Row 132/40). For the
‘Historic’ classification, all images were resampled to the resolution
of the MSS image (57 mpixels). We classified six classes, including
the three forest types, a forest cover loss 1974–1990 class, agriculture
and grassland, and other (bare/urban/snow/water).

Using the Landsat TM/ETM+imagery from 1990, 1999, and 2009,
we performed a second composite classification for the decade
ca. 1999 ca. 2009 Reference

TM ETM TM ETM
10/28/1999 4/13/2000 11/24/2009 12/25/2000



Table 3
Producer (PA) and user (UA) accuracies, adjusted areal extent and confidence intervals
(CI) for each land cover class.

Class PA UA Adj. area (ha) ±CI (ha) ±CI (%)

Historic classification
Old-growth forest 93% 95% 566,233 11,976 2%
Pine/oak woodland 93% 89% 513,940 13,562 3%
Non-pine scrub 86% 86% 236,890 10,001 4%
Deforestation Historical 78% 95% 94,763 6304 7%
Agriculture and Grassland 89% 94% 226,072 7527 3%
Other 95% 93% 500,732 10,247 2%
Overall accuracy 92%
Khat 0.92

Pre-ban and post-ban classification
Old-growth forest 91% 91% 501,165 12,435 2%
Pine/oak woodland 93% 92% 517,316 11,836 2%
Non-pine scrub 97% 90% 533,596 11,696 2%
Deforestation Pre-ban 79% 96% 58,467 4645 8%
Deforestation Post-ban 73% 95% 57,880 5202 9%
Agriculture 97% 98% 138,090 2600 2%
Grassland 92% 99% 68,710 3201 5%
Alpine shrub expansion 93% 99% 79,476 3153 4%
Sparse shrub 95% 97% 96,842 2850 3%
Bare/Urban 86% 95% 106,076 5215 5%
Other 97% 96% 392,733 6097 2%
Overall accuracy 93%
Khat 0.93
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leading up to the logging ban (Pre-ban, 1990–1999), and the decade
following the logging ban (Post-ban, 1999–2009). We stacked the
five TM/ETM+ images alongwith elevation and hillshade data. The hill-
shade image for the Pre-ban and Post-ban classifications was derived
using the image acquisition time of the October 28, 1999 image, Path/
Row132/40 (sun elevation=41.87°, azimuth=147.17°). One hillshade
image was sufficient to represent shading caused by topography. For
this classification, all images were resampled to a spatial resolution of
28.5 m. We classified the image stack into 11 classes, including three
permanent forest types and forest loss classes in different periods
(1990–1999 and 1999–2009), agriculture, grassland, alpine shrub ex-
pansion, sparse shrub, bare/urban, and other (snow/water) . To elimi-
nate isolated misclassified pixels, we identified contiguous groups of
pixels (using the 4-neighbor rule) andmerged small patches (b2 pixels
for theHistoric classification and b6 pixels for the Pre-ban and Post-ban
classification) into the largest neighboring patch (minimum mapping
unit of 0.65 ha for the historic classification and 0.49 ha for the Pre-
ban and Post-ban classification).

We randomly withheld 10% of the dataset for the accuracy assess-
ment and 90% of the pixels were used for training. We classified the
image stack a total of ten times, with a different random training
dataset each time, and the final accuracy measures are derived from
the mean error estimates of all ten classifications. The final classifica-
tion was produced from 100% of the data points.

For accuracy assessment, from the confusion matrix we calculated
an area-adjusted error matrix, including area-adjusted user, produc-
er, and overall accuracies, that take into account the areal proportions
of each class (Card, 1982). This is necessary to correct for potential
bias due to the differences in the proportions of classes in the valida-
tion data and the true areal proportions of these classes in the map.
We also adjusted the total area estimates from the classified map
according to the bias correction, to produce an adjusted area coverage
for each class, and then calculated 95% confidence intervals for these
area estimates (Card, 1982; Cochran, 1977) to provide a more accu-
rate and intuitive representation of error.

3.5. Analyzing logging rates and patterns

We compared forest change among the three different time pe-
riods, and at three different scales: the entire study area, county-
level, and township-level. We used two different measures of forest
disturbance. First, we calculated the number of hectares of forest
loss. Second, we calculated an area and time-adjusted disturbance
rate (Eq. (1))

ADR ¼ Dj=FCBj

� �
=t

� �
� 100 ð1Þ

where ADR is the annual disturbance rate, Dj is the number of pixels
in the forest cover loss class for time period j, FCBj is the total number
of forest pixels at the beginning of time period j, and t is the number
of years in time period j.

To understand the influence of humans on forest change patterns,
we used spatial data on road networks, villages, and provincial and
township boundaries, all digitized from 1:250,000 topographic maps
from the late 1990s. We calculated township-scale village density
(as a proxy for population density, which was not available), and
road density (including national, provincial, county and village-level
roads). Pearson correlation and multiple linear regression analyses
were performed to determine the relationship between logging
rates, village density, and road density during the three time periods.
To understand the economic and demographic implications of NW
Yunnan's rapid development, we gathered economic statistics from
official Chinese sources, compiled at the scale of Diqing Prefecture.
Data sources included the Yunnan Statistical Yearbooks, the Diqing
Prefecture Statistics Bureau, the Diqing Tourism Bureau, and the
Bank Loan Registration Information System of Diqing Prefecture. Eco-
nomic data were corrected for inflation using the World Bank's GDP
deflator values for China (World Bank 2011).
4. Results

4.1. Multiple forest class change detection

Area-adjusted overall accuracy (i.e., accuracy measures that are
corrected for potential bias due to the differences in the proportions
of classes in the validation data and the true areal proportions of
these classes in the map (Card, 1982)) was 92% for the Historic clas-
sification and 93% for the Pre-ban and Post-ban classification
(Table 3). Old-growth forests were mapped with an accuracy of at
least 91% in both classifications. For the change (i.e. deforestation)
classes, producer accuracies were lower than the user accuracies,
representing a high error of omission, which means that our esti-
mates of forest loss were conservative.

The lowest accuracies were the producer accuracies for the forest
cover loss classes during the Historical (78%), Pre-ban (79%) and Post-
ban (73%) periods. Accuracies from the raw confusion matrix for
these change classes were much higher (ranging from 91 to 94%).
However, when adjusting for potential areal biases, accuracies for
classes with small areal proportions (e.g. a change class) can diminish
dramatically even when just a few points of a smaller class are mis-
classified, because these pixels are frequently misclassified as a class
with larger areal proportion (e.g. a no-change class), creating a high
error of omission and a low producer accuracy. By generating area
estimates for each class, and confidence intervals around those area
estimates, a more accurate representation of error was provided
(Table 3).
4.2. Logging rates and patterns

During the Historic period, 94,763±6304 ha of forest were logged
(95% confidence interval). Logging dropped dramatically during the
Pre-ban (58,467±4645 ha) and Post-ban (57,880±5202 ha) pe-
riods. In the entire study area, the annual disturbance rate decreased
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from 0.37% in the Historic period, to 0.29% and 0.27% in the Pre- and
Post-ban periods, respectively.

The spatial pattern of logging changed over time. Multiple linear
regressions to predict logging rates as a function of population and
road density were significant during the Historic (p=0.04, Adj.
R2=0.15) and Pre-ban (p=0.01, Adj. R2=0.25) periods, but not sig-
nificant (p=0.59) during the Post-ban period. In univariate correla-
tions of logging rates with either road or population density, logging
rates were positively correlated with road density (p=0.05,
r=0.36) during the Pre-ban period, and negatively correlated with
village density during both the Historic (p=0.01, r=−0.46) and
Pre-ban periods (p=0.002, r=−0.53). However, during the Post-
ban period, there was no significant correlation between logging
rates and road density (p=0.46) or logging rates and village density
(p=0.74).

Logging rates decreased dramatically throughout the study area
after the Historic period, except for the area around Shangrila City,
where logging rates were consistently high in all three time periods
(Fig. 1e). Furthermore, in Shangrila County, the area of old-growth
forest cleared after the ban doubled compared to old-growth forest
loss during the Pre-ban period (Fig. 4). Meanwhile, logging of other
forest types (pine/oak woodlands and non-pine scrub), and in other
counties, remained relatively consistent during the Pre- and
Post-ban periods.

4.3. Forest cover and regeneration

Total forest cover (old-growth forest, pine/oak woodlands and
non-pine scrub combined) increased in the study area from 62% in
1990 to 64% in 2009 (+50,000 ha) (Fig. 5a and b). This forest area in-
crease represented mainly an increase in the non-pine scrub class
(from 11% to 24%), while old-growth forests and pine/oak woodlands
declined (from 26% to 20% and from 25% to 20%, respectively). Other
land cover types remained fairly constant.

We summarized land cover in 1990–2009 for those pixels that
were deforestation or non-pine scrub forest classes in the Historic
period to understand trends in the regeneration (Fig. 6). Fourteen
percent of the areas logged during the Historic period remained
non-forested in 2009 (Fig. 5c). Of the areas where forest cover regen-
erated, only 14% had a species composition similar to the old-growth
forest community, and 8% regenerated as pine/oak woodlands. The
remaining 64% of the logged area regenerated as non-pine scrub.
Similarly, only a small proportion of the non-pine scrub during the
Historic period transitioned to either the old-growth forest communi-
ty (8%) or pine forest (9%) as of 2009, and a substantial proportion
(17%) lacked forest cover (Fig. 5d). The majority of the non-pine
scrub in the Historic period remained as such in 2009 (66%). Further-
more, regeneration rates varied spatially. Areas with abundant
Fig. 4. Hectares of forest loss by forest type during the Pre-
old-growth forest (Fig. 7a) often had low rates of regeneration of
the old-growth forest community (Fig. 7b).

4.4. Socioeconomic changes

Economic data indicated that there was rapid development since
the logging ban in 1998, due to a rapidly developing tourism industry
(Fig. 8a). In 1995, only 40,000 tourists visited Diqing Prefecture, but
as of 2009, it received 5.3 million visitors annually. Income from tour-
ism rose from 19 million RMB in 1995 to 5400 million RMB in 2009.
Local government revenue increased 40-fold, from 11 million RMB
in 1987 to 440 million RMB in 2009, and annual rural net incomes
more than tripled from 661 RMB in 1989 to 2100 RMB in 2009
(Fig. 8b).

5. Discussion

5.1. Multiple forest class change detection

Remote sensing in our study area faces many obstacles, and our
study represents the most detailed forest change detection analysis
to date for SW China (Tuanmu et al., 2010; Vina et al., 2007, 2008;
Willson, 2006). Image analysis is challenged by snow cover, strong
illumination effects from topography, and senescent vegetation. The
collection of ground truth data is difficult, and forest distribution
and composition is extremely heterogeneous. We employed a range
of techniques to overcome these obstacles. First, we used SVM to han-
dle complex distributions of our land cover classes. Samples from a
wide range of intra-image variability, including dramatic illumination
effects and variable snow cover, were included in the training dataset
to accommodate the multi-modal and non-normal distributions
inherent in such a complex environment. Furthermore, in the field,
we specifically identified training data in areas at the spectral bound-
aries of a class (e.g., 45% pine/oak woodlands and 55% old-growth
forest) as input for the SVM. These “mixed pixels” were crucial to
aid the SVM to identify precise hyperplanes between the classes.

Second, multi-temporal imagery (Wolter et al., 1995) from late fall
and early spring aided the separation of old-growth forest from the
pine/oak woodlands and the non-pine scrub classes (Fig. 2). In south-
west China, November through April is a period of extended drought,
and the fact that different tree species respond differently to drought,
was a crucial factor to discriminate forest types. The composite of the
multi-temporal TM imagery from 1990 with the single winter MSS
imagery from 1974 was essential to accurately classify different forest
types during the historic period.

Finally, we combined two common approaches to multi-temporal
change detection — composite and post-classification change detec-
tion techniques — to reduce multiplicative error. The “historical”
ban (1990–1999) and Post-ban (1999–2009) periods.
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Fig. 5. Land cover distributions in a) 2009 and b) 1990 for the entire study area. The 2009 land cover of areas c) logged during the Historic period (1974–1990) and d) classified as
secondary forest/shrub during the Historic period.

Fig. 6. A subset of the classifications for an area 8 km north of Shangrila that experienced intense logging during the Historic, Pre-ban and Post-ban periods. a) Logging activity and
non-pine scrub surrounded a large patch of old-growth and pine forests during the Historic period. b) The composite classification from 1990 to 2009 for only those areas that were
logged or non-pine scrub during the Historic period show that the majority of these areas regenerated as non-pine scrub. Exceptions include regenerating pine plantations and sites
that continued to be logged. c) During the Pre-ban and Post-ban periods, the large patch of pine and old-growth forest from (a) experienced intense logging.
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a) 2009 Proportion of 
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b) Regeneration as 
Old-growth Forest

Fig. 7. Patterns of (a) current proportion of old-growth forest on the landscape and
(b) relative rates of regeneration as old-growth forest.
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classification gave us the baseline maps necessary to compare logging
rates for different forest types during the Pre- and Post-ban time
periods, but we reduced much of the cumulative error that would
have resulted from a pure post-classification change detection
methodology.

Despite the high level of accuracy achieved by our classifications,
there are uncertainties in our estimates. First, it is possible that
Fig. 8. a) Economic development and population growth, and b) growth of the tourism
industry in Diqing Prefecture.
classification accuracies were overestimated because our ground
truth dataset was not random, possibly resulting in spatial autocorre-
lation among the pixels within polygons. On the other hand, accuracy
was underestimated to some degree because we purposefully includ-
ed “mixed pixels” in our training and validation dataset to aid SVM in
hyperplane placement. These points were often classified inaccurate-
ly, even though in the field the appropriate classification is
ambiguous.

Second, forests in this region are extremely heterogeneous and we
had to limit our classification scheme to just three forest types to
achieve a balance between classification accuracy and thematic detail.
Third, our classification could not discriminate logging from other for-
est disturbances (insects and fire), which are not frequent events in
our study area, but do occur in isolated patches. In addition, selective
logging is not well captured in our land cover classifications. Finally,
during post-classification processing we eliminated small, isolated
patches to remove noise, and small patches of logging may have
been falsely removed. Selective and small-scale logging do occur in
our study area, and further research is necessary to quantify the ex-
tent and consequences of these logging practices.

5.2. Logging patterns

The logging patterns that emerged from our satellite image analy-
sis reflect NW Yunnan's turbulent history since the mid 1900s, and
highlight its consequences for old-growth forest and biodiversity
conservation. Our analysis confirmed that logging was indeed intense
throughout the study area during the Historic period (1974–1990)
(Fig. 1b). Logging rates decreased dramatically during the Pre-ban
period (1990–1999), and during the Post-ban period (1999–2009),
logging was reduced even further. Thus, our analysis indicates that
the bold forest protection policies that China implemented were
successful and increased forest cover in our study area.

However, substantial logging still occurred despite the logging
ban. Approximately 60,000 ha was logged in each of the Pre-ban
and Post-ban periods, and the spatial distribution of logging changed
dramatically. We expected that areas with high road density would
have high rates of logging (Chomitz and Gray, 1996; Cropper et al.,
2001). Surprisingly, this was the case during the Historic and Pre-
ban periods, but not in the Post-ban period. Village and road density
had some predictive value for logging rates during the Historic and
Pre-ban periods, but not during the Post-ban period, indicating that
the processes influencing regional-scale patterns of logging changed.

For example, most logging during the Historic and Pre-ban periods
was performed by state logging companies. Easily accessible areas
(i.e. along major roads) were already logged in high-population den-
sity areas, but abundant old-growth forests remained along major
roads in low population density areas, which explains the positive
correlation of logging with road density and the negative correlation
of logging with village density during these early periods. After the
logging ban, state-sponsored logging companies disbanded, and log-
ging was only allowed by local people for non-commercial use.
Logging and population/road density became divorced (i.e. relation-
ships became insignificant) during the Post-ban period because
logging became concentrated in a “hotspot” around Shangrila.

Old-growth forest logging accelerated in the Post-ban period
around the city of Shangrila most likely because of high demand for
old-growth timber due to rapid ecotourism-based economic develop-
ment. Local and national government officials responded to the
logging ban by initiating the development of NW Yunnan into one
of the premiere ecotourism destinations in China (Jenkins, 2009;
Kolas, 2008; Morell, 2002). Shangrila City is the tourism “gateway”
into NW Yunnan, and transformed since the 1980s from a backwater
town into a one of the premiere tourist destinations in China (Jenkins,
2009; Kolas, 2008; Morell, 2002). The region's only airport (built in
1999) is located 5 km outside of Shangrila City. In 2007, China's
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flagship National Park Pudacuo (Jieng, 2008), was established just
30 km from Shangrila City.

The development of Shangrila resulted in a growing demand for
tourism accommodations (Fig. 8a) and a growing population
(Fig. 8b). From 2002 to 2007, new tourism-based businesses received
2.3 billion RMB in government loans. Shangrila's tourism industry
capitalizes on both the natural beauty of the region, and on Tibetan
culture (Jenkins, 2009). Therefore, much of the new construction for
tourists (guesthouses, tourist attractions, restaurants, and vacation
homes) uses a Tibetan architecture style (Kolas, 2008). In addition,
increasing wealth resulted in more — and larger — traditional
Tibetan-style houses for local families. Villagers reported to us that
each new Tibetan house requires between 50 and 100 trees, and
that the primary sources of timber were the old-growth spruce and
fir forests around Shangrila City. Among 23 houses that we visited,
those built after 2001 had, on average, central pillars with an average
diameter of 79 cm, while pillars in those built before 2001 were only
51 cm in size. These data are too limited to be representative, but in-
dicate potential effects of increasing wealth. In addition to construc-
tion materials, each household needs 10–30 m3 of fuelwood/year
(Xu and Wilkes, 2004). Higher demand for firewood due to the in-
creasing number of households, and the restaurants and guesthouses
of the tourism industry, thus likely accelerated forest cover loss
around Shangrila.

Increased logging rates were likely not a result of increasing de-
mand for wood products in other parts of China, as we did not
encounter logging camps or logging trucks, and export of timber to
the rest of Yunnan is strictly prohibited and enforced by logging
checkpoints. Instead, the increasing demand for old-growth timber
in Shangrila is due to the rapidly growing tourism industry and the
increasing income levels of the local people. Research in the Wolong
Giant Panda Reserve in neighboring Sichuan Province similarly
revealed accelerated forest cover loss following reserve implementa-
tion, due to tourism, a growing population, and greater wealth (Liu et
al., 2001).

Ecotourism, or nature-based tourism, is expanding around the
world because it offers a strategy to wed sustainable economic devel-
opment with environmental protection (Balmford et al., 2009;
Karanth and DeFries, 2011). However, what constitutes true ecotour-
ism, and the consequences of ecotourism for biodiversity conserva-
tion, is still a matter of great debate (Kirkby et al., 2010; Nash,
2009; Sims, 2010; Wang and Buckley, 2010; Yu et al., 1997). In
Shangrila, the tourism industry encompasses a wide range, including
nature, adventure, ethnic, and protected area tourism. We used the
term “ecotourism” to represent this wide range because, first, appre-
ciation of nature is undeniably the primary attraction of Shangrila.
Second, and perhaps more importantly, Shangrila's tourism industry
is branded as ecotourism, i.e., both the producers (advertisers, local
businesses, and tour guides) and consumers (i.e. tourists) believe
that they engage in ecotourism. As such, it is particularly noteworthy
that our result showed continued deforestation.

5.3. Forest cover trends

While old-growth forests declined, forest area overall increased
from 62% in 1990 to 64% 20 years later. However, only a fraction
(20%) of deforested or non-pine scrub areas during the Historic peri-
od returned to either pine/oak woodlands or the old-growth forest
vegetation community (Fig. 5c and d). This is not to say that with
time and appropriate forestry management, the non-pine scrub for-
ests in our study area could not potentially return to the original veg-
etation community, but we did not observe this. No information is
available about successional trajectories of Shangrila forests, but in
general, regeneration to climax forest in temperate regions takes cen-
turies to thousands of years, much slower than the observed rate of
old-growth forest clearing around Shangrila. Furthermore, our field
observations indicated that land use intensity was high in regenerat-
ing areas, inhibiting the regeneration of the original vegetation com-
munity. Likewise, our remote sensing results suggest that non-pine
scrub may not be in a process of natural succession, since we ob-
served small proportions of regeneration to pine or vegetation com-
munities typical of old-growth forests in those areas that were non-
pine scrub forest from 1974 to 1990.

The assumption of forest transition theory is that increasing forest
cover indicates that environmental conditions are improving (Mather
et al., 1999), but here we show that increasing forest cover alone does
not necessarily mean that biodiversity and natural ecosystems are on
a pathway towards recovery (Meyfroidt and Lambin, 2011). We ob-
served that secondary and scrub forests are a growing proportion of
forests in our study area, which is similar to many countries around
the world (Chazdon, 2008; Grau et al., 2008). Yet, most studies show-
ing shifts in forest trajectory have not distinguished between primary
and secondary forest types, even though the value of regrowing for-
ests, in terms of species habitat and ecosystem services, is far lower
than that of old-growth forests (Chazdon, 2008; Meyfroidt and
Lambin, 2008; Perfecto and Vandermeer, 2010). Land use largely de-
termines whether the forests regrowing after harvest will eventually
recover to a high-diversity ecosystem (Chazdon et al., 2009), but
unfortunately, land use intensity in secondary forests is not included
in forest transition theory (Meyfroidt et al., 2010; Perfecto and
Vandermeer, 2010). Likewise, forest transitions and increasing forest
cover may be only due to monoculture plantations with little biodi-
versity value (Rudel, 2009) or result in more intense land use of
surrounding forests, with potentially negative effects on overall
biodiversity (Perfecto and Vandermeer, 2010). Furthermore,
countries experiencing a forest transition may simply export their
ecological footprint elsewhere (Mayer et al., 2005; Meyfroidt and
Lambin, 2009; Meyfroidt et al., 2010).

6. Conclusions

Our results highlight that forest monitoring must incorporate
multiple forest classes to assess forest change in the context of the
conservation of biodiversity and ecosystem services. Simple forest
versus non-forest cover assessments in areas with remaining unpro-
tected old-growth forests are inadequate to understand the implica-
tions of protection and development strategies for high-diversity
forest types, and can obscure important environmental degradation
processes. This represents a major challenge for the remote sensing
community, because error and complexity increases when multiple
dates or multiple classes are examined via change detection. We
used multi-temporal imagery, carefully selected training data with
SVM and a combination post-classification and composite classifica-
tion technique to reduce error and accurately detect change in multi-
ple forest classes in a complex environment.

One of the primary objectives of the NFPP is to ban commercial
logging of all forests in southwest China, and allow only small quotas
for local consumption. Our results show that, overall, China's forest
protection policies effectively reduced forest loss in NW Yunnan.
Logging decreased over most of the landscape, and forest cover in-
creased. However, the logging ban was trumped in areas of rapid eco-
nomic development, as old-growth forest loss accelerated due to a
growing ecotourism industry. Ecotourism has expanded rapidly in
developing countries around the world (Balmford et al., 2009;
Karanth and DeFries, 2011), because it offers a strategy to wed sus-
tainable economic development with environmental protection.
However, our results show that even in Shangrila — an arguably
best-case-scenario with strong institutions, well-funded environ-
mental protection efforts, and strong government policies aimed at
forest protection — the negative impacts of ecotourism-based eco-
nomic development on the environment outweighed conservation
efforts. As tourism development continues to expand into previously
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remote and little-visited regions, the negative impacts observed near
Shangrila City in the last decade may soon follow unless steps are
taken to mitigate the threats that development poses.
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