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The US Census provides the primary source of spatially explicit social data, but

changing block boundaries complicate analyses of housing growth over time. We

compared procedures for reconciling housing density data between 1990 and

2000 census block boundaries in order to assess the sensitivity of analytical

methods to estimates of housing growth in Oregon. Estimates of housing growth

varied substantially and were sensitive to the method of interpolation. With no

processing and areal-weighted interpolation, more than 35% of the landscape

changed; 75–80% of this change was due to decline in housing density. This

decline was implausible, however, because housing structures generally persist

over time. Based on aggregated boundaries, 11% of the landscape changed, but

only 4% experienced a decline in housing density. Nevertheless, the housing

density change map was almost twice as coarse spatially as the 2000 housing

density data. We also applied a dasymetric approach to redistribute 1990 housing

data into 2000 census boundaries under the assumption that the distribution of

housing in 2000 reflected the same distribution as in 1990. The dasymetric

approach resulted in conservative change estimates at a fine resolution. All

methods involved some type of trade-off (e.g. analytical difficulty, data

resolution, magnitude or bias in direction of change). However, our dasymetric

procedure is a novel approach for assessing housing growth over changing census

boundaries that may be particularly useful because it accounts for the uniquely

persistent nature of housing over time.

Keywords: US Census; Housing density; Interpolation; MAUP; Census

boundary; Land use/land cover change

1. Introduction

Housing development has been occurring at unprecedented rates, both globally and

in the United States. In fact, due to the declining average household size, housing

development is growing substantially faster than the population (Liu et al. 2003).

From 1945 to 2002, the population in the United States doubled, but urban area

quadrupled (Lubowski et al. 2006). The fastest-growing type of development in the
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United States, low-density residential, also consumes the most land, occupying

approximately five times more area than all other urban and suburban develop-

ments combined (Crump 2003, Theobald 2004).

The pace and extent of housing growth is linked to serious ecological and social

issues, so understanding and documenting this change is becoming an urgent

research priority in a number of disciplines (Radeloff et al. 2001, Brown et al. 2005,

Foley et al. 2005). Housing development is a critical concern for conservation

biologists because it is a primary cause of biodiversity loss (Sala et al. 2000,

Theobald et al. 2000, Shochat et al. 2006). Both plant and animal species are directly

impacted by the habitat loss and fragmentation caused by housing development (Liu

et al. 2003), but housing development also indirectly threatens ecological integrity

and native species diversity by contributing to factors such as exotic species

invasions, increased resource consumption, and recreational impacts (McKinney

2002). Furthermore, ecologists are concerned about the locations of habitat

conversion because a substantial proportion of new residential development is now

occurring at the boundaries of public lands and sensitive conservation areas (Miller

and Hobbs 2002).

Many of the ecological issues related to housing development have social

implications. For example, dispersed housing development located within or near

wildland vegetation increases the wildland urban interface, which in turn increases

human vulnerability to wildfire (Radeloff et al. 2005). Other social issues related to

urban sprawl include traffic congestion, public health concerns and fiscal disparities

(Downs 1999). In fact, urban sprawl is now one of the top concerns of US citizens

(Pew Center for Civic Journalism 2000), who are increasingly voicing demands for

more open space (Kline 2006).

Considering these wide-reaching impacts, there is growing demand for fine-

resolution, spatially explicit social data that can be used to document how the

pattern and extent of housing density changes over time (Brown et al. 2005). The US

Census Bureau provides the primary source of social and housing data used in the

health, social, ecological and geographic sciences in the United States (Krieger

2006). Through the topologically integrated geographic encoding and referencing

(TIGER) system, data for various political and statistical geographies are provided

nation-wide every decade at the resolution of census blocks, which are the smallest

geographic areas for which the Bureau of the Census collects and tabulates data.

The boundaries of census blocks occur along roads, railroads, streams or other

bodies of water, other visible and cultural features, and legal or administrative

boundaries (US Census Bureau 1994). While these fine-resolution census block data

provide a wealth of information, the geography of block boundaries changes over

time. This is a major drawback; in many states, more than 50% of the census blocks

changed boundaries from 1990 to 2000 (figure 1).

The need to analyze spatially explicit social data over time is internationally

pervasive and not limited to the United States. Many other countries also collect

social, economic and demographic data aggregated within administrative zones.

These data may be in the form of census maps (e.g. United States, Japan, United

Kingdom), or they may be available as national longitudinal geographic

information systems (GIS) (e.g. China, Belgium, Ireland and Russia) (Sadahiro

2000, Martin 2003, Knowles 2005, Gregory and Ell 2006). Some of these census

products and historical datasets provide the only long-term, spatially explicit social

data available for some countries, while for other countries, these data are available
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at a finer resolution than other available data. All countries have a common

challenge: to examine temporal characteristics of housing density while adminis-

trative boundaries change over time.

Changes in census boundaries (or other administrative zones) are problematic

because they result in incompatible areas, or spatial bases (Goodchild et al. 1993),

for analyzing changes between census enumerations. Spatial basis incompatibility

problems occur any time data are available for one spatial basis (e.g. census

geography), but analysis is required for data in a different spatial basis (e.g.

ecoregions). Problems also occur in longitudinal analysis, when geography changes

over time. The types of analytical issues related to the need for interpolation

between incompatible spatial bases (or ‘modifiable’ areal units) were first described

in the statistical and geographic literature and are collectively referred to as the

modifiable areal unit problem (MAUP) (Openshaw 1984). The MAUP describes

how the results of an analysis may vary if areal data are combined into sets of

increasingly larger or smaller areas (the ‘scale’ problem); or, if boundaries are

defined differently within areas of the same geographic extent (the ‘zoning’ problem)

(Jelinski and Wu 1996). The zoning problem only applies to spatially extensive

variables. Both scale and zoning problems occur when census boundaries change

over time.

The problems inherent in changing boundaries between census dates seriously

limit any benefits of having finer-resolution data in more recent years. To date,

many of the methods that have been developed to overcome this problem have

involved some level of sacrifice, or trade-off, in the analysis. For example, some

approaches simply avoid direct geographic overlay in the analysis between dates.

One of these approaches, referred to as ‘contemporaneous census tracts’, assesses

change by using the boundaries from one census date to analyze data from that year

Figure 1. The percentage of 2000 US Census blocks that had different boundaries in the
1990 US Census.
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and then uses boundaries from other census dates to analyze data from those years

(e.g. Yang and Jargowsky 2006). While this approach offers a unique way to

quantify change without incurring errors due to changing census boundaries, it also

prohibits spatial analyses that are only possible through direct overlay.

When direct geographic overlays are performed, data within census block

boundaries are sometimes merged or aggregated for one date based on the

boundaries of another date without considering the MAUP and potential for

misinterpretation of the analysis (e.g. Heidkamp and Lucas 2006). Other approaches

apply analyses at coarser scales than census blocks to assure consistent zonal

boundaries over time (e.g. Hammel and Wyly 1996), although even census tract

boundaries may shift over time. Although analyses using these coarser scales are

appropriate for some broad-scale applications (e.g. national land use change, Brown

et al. 2005), other applications may require data to be analyzed at finer resolutions

(e.g. economic change in housing markets, Steif 2004).

One method that allows direct overlay at a finer resolution is areal interpolation, a

common spatial interpolation technique used to transfer data from one zonal system

(the source zone) into another zonal system (the target zone). The simplest form of

this technique is areal-weighting, which assumes that the data to be interpolated are

distributed homogenously within each source and target zone (Goodchild and Lam

1980, Flowerdew and Green 1992). Because social characteristics are often

distributed heterogeneously instead of homogenously, errors inherent in areal-

weighting have been widely documented (Sadahiro 2000, Gregory 2002, Gregory

and Ell 2006). To overcome these problems, some analysts have developed

dasymetric mapping techniques, which are a form of areal interpolation. In

dasymetric mapping, the analyst uses ancillary data to develop a weighting scheme

that determines how the source zone data should be distributed in the target zone

boundaries. Depending on the application and type of data, dasymetric mapping

may or may not improve upon areal-weighted interpolation (Chen et al. 2004, Hay

et al. 2005).

Most of census interpolation focuses on population data as the primary variable

of interest. In some cases, population data are used as ancillary information to

inform the interpolation of other demographic variables (e.g. Gregory 2002). Most

applications, however, use other ancillary data to improve the interpolation of

population (e.g. Mennis 2003, Reibel and Bufalino 2005, Langford 2006, GeoLytics

(http://geolytics.com/Default.asp)). Manipulating raster-based ancillary data (such

as remotely sensed land cover) so as to distribute population data into polygon-

based target zones is challenging; so the use of dasymetric mapping has been limited

(Chen et al. 2004). Using vector-based data, such as streets, has improved the results

of areal interpolation while easing the difficulties involved with raster-based

interpolation (e.g. Reibel and Bufalino 2005). However, this approach assumes that

local roads are reasonable indicators of where population is distributed. Another

approach used to estimate the spatial distribution of population density is geospatial

Kernel Density Estimation. Kernel Density Estimation techniques typically use

point-based data to derive a continuous density surface in which population

densities across grid cells are weighted according to their distance from points with

known population values (Goodchild et al. 1993). Kernel Density Estimation

methods depend on the availability and resolution of population data, so they work

best in urban areas where points of known population are located close together

(Martin et al. 2000).
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While these different approaches have been used to analyze change in population

density, there is a strong and increasing need to map housing density patterns over

time due to the major ecological and social implications of such profound landscape

change. Considering that interpretations of population change have been sensitive

to the method of interpolation, our objective was to develop and compare alternate

methods of interpolating housing density to determine whether estimates of housing

growth share this same sensitivity. Housing data are different from population data

because housing structures are stationary and persistent over time, whereas people

tend to migrate. Therefore, in addition to areal weighting and interpolation over

aggregated boundaries, we developed a dasymetric technique that exploited this

unique aspect of housing data. For this approach, we redistributed 1990 housing

data into 2000 census boundaries based on the assumption that 1990 housing was

distributed proportionately to 2000 housing. We compared estimates of housing

growth using all three of these techniques to estimates of housing growth based on

no interpolation in order to assess the differences between the results using these

different methods.

2. Methods

2.1 Data

We developed and tested our methods using the TIGER census data for Oregon, a

state where more than 60 percent of block boundaries changed between 1990 and

2000, making it a particularly complex and challenging case. The majority of

boundary changes that occurred in Oregon, as well as the other states in the nation,

occurred because the 2000 blocks tended to be finer in resolution, although in a few

places the 1990 blocks had finer resolution than the 2000 blocks (figure 2). The most

widespread consequence of these boundary shifts was that, without reconciliation,

large areas appeared to change from low housing density in 1990 to no housing in

2000 (figure 3A).

Figure 2. Maps of Sherman, Gilliam (A), and Lake counties (B) in Oregon illustrating the
mismatch in census boundaries between 1990 and 2000.
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Figure 3. Maps of Oregon showing the spatial differences in housing density between 1990
and 2000. (A) shows maps of housing density using 1990 and 2000 Census blocks (with no
reconciliation between block boundaries). Three methods of reconciliation between Census
block boundaries are shown with (B) areal weighting, (C) aggregation, and (D) dasymetric
procedure.
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2.2 Interpolation methods

In order to evaluate the sensitivity of housing density estimates to different

interpolation methods, we compared an overlay of 1990 and 2000 census boundaries

with no processing to three alternative interpolation approaches. We compared

approaches by visualizing the differences in the spatial distribution of housing

density classes in the 1990 and 2000 maps and by calculating percent change in

housing density from 1990 to 2000. Most of the area in the state had low housing

density (less than 8 housing units per km2). Therefore, for the analysis, we binned

housing density into classes with a finer resolution at lower densities so we could

better distinguish change among the classes in this range.

2.2.1 Areal weighting. Our areal weighing approach involved redistributing the

housing data in the 1990 census blocks (the source zones) into the 2000 census

blocks (the target zones) (as shown in the overlay in figure 4A). The procedure

depended upon two assumptions: first, the analysis had to occur across the same

geographic extent for 1990 and 2000 (the extent in figure 4B); and second, the 1990

data had to be normalized into densities. To start the areal weighting, we first

performed a union with the two geographies. Then, using the 2000 geography, we

computed the area-weighted average for all of the 1990 component densities that

occurred within each 2000 block’s boundaries (figure 4B). In other words, we

multiplied the number of houses per unit area in the 1990 census blocks by the area

of the 2000 census blocks to arrive at estimates of 1990 density in the 2000 census

blocks.

2.2.2 Aggregation. Due to the multiple ways that boundaries can shift between

census enumerations, we defined four possible relationships that can exist between

datasets, assuming that the extents of the two incompatible zonal systems are

Figure 4. Conceptual diagram of the areal weighting method to redistribute 1990 census
data on housing into 2000 census block boundaries. (A) shows an overlay of the 1990 and
2000 census boundaries and the distribution of the number of houses in 1990. (B) shows how
the houses in 1990 are area-weighted within the intersection of 1990 and 2000 to determine the
areal interpolated density of the 2000 target zone.
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congruent (such as the extent in figure 4B common to both the 1990 and the 2000

blocks). Zone A represents the 1990 blocks, and zone B the 2000 census blocks.

(1) If there is an exact correspondence between a zone in A and B, then the
relationship of A to B is one to one (1–1).

(2) If several zones in B can be aggregated to exactly match a zone in A, the

relationship of A to B is one to many (1–M). For example, a 1990 block has

been broken into several pieces in the 2000 geography.

(3) If several zones in A can be aggregated to exactly match a zone in B, the

relationship of A to B is many to one (M–1). For example, a group of 1990

blocks has been combined into one 2000 block (figure 4B).

(4) If none of the previous apply, then the relationship of A to B is many to

many (M–M) such that .1 zone in both A and B must be aggregated to

create congruent shapes (figure 5).

In all of these cases, the shapes created by these aggregations are referred to as

‘least common denominator’ polygons (LCD polygons), in other words, the smallest

possible combination of blocks required to match the 1990 boundaries to the 2000

boundaries. In all except the 1–1 case, LCD polygons are larger (lower resolution)

than the zones of either A and/or B (illustrated by the LCD polygon in figure 5).

In the areal weighting method (figure 4B), only the M–1 case was performed at the

level of the LCD polygons. Otherwise, averaging occurred at the resolution of the
2000 census blocks. For the aggregation method, we explicitly identified LCD

polygons, then summed the number of houses over the aggregated component zones

to arrive at values for the LCD polygons (figure 5). Thus, for aggregation, we

summed extensive variables (i.e. counts) instead of relying on intensive values (i.e.

proportions, percentages, or rates). To obtain extensive variables for the LCD

polygons, we multiplied the intensive variables by the areas of the component zones

and summed them for the LCD polygon.

2.2.3 Dasymetric method. We designed the dasymetric mapping method to take

advantage of the unique characteristic of housing data. Because housing units are

rarely lost or moved (particularly on a time scale of a decade), the distribution of

Figure 5. Conceptual diagram of the aggregation method to create least common
denominators (LCDs), which are the smallest combined areas between 1990 and 2000 census
block boundaries. The numbers of houses were summed for 1990 and 2000 to determine the
total number within the common boundary.
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houses at the beginning of a time period will be largely unchanged at the end of the

time period. Thus, distribution of 2000 housing depends on that of 1990 housing.

Our dasymetric approach used a bootstrapping technique in which the 2000 housing

density distribution served as ancillary data to determine how to distribute the 1990

housing density data. In other words, we allocated the 1990 housing units into the

2000 census blocks according to the distribution of the 2000 housing units, assuming

that the 1990 housing was distributed proportionately to the 2000 housing.

Like the aggregation approach, our first step in the dasymetric procedure was to

identify LCD polygons. Like the areal weighting method, we used the 2000 TIGER

as our output geography instead of the LCD polygons. If the LCD polygons

represented a 1–1 relationship, no processing was necessary because the houses at

both census dates were distributed within the same geography.

If the relationship was 1–M (the most frequent scenario), we used the housing

distribution across the component zones in 2000 to redistribute 1990 houses across

the same zones. The first step in this process was to sum the extensive variable (i.e.

count of houses) over the n 2000 component zones (b) within each LCD polygon to

get T, where:

Tb~
Xn

i~1

bi ð1Þ

Next, we let a represent the extensive variable (i.e. count of houses) in the LCD

polygon for 1990, and pi be the proportion bi /Tb. Then, for each of the component

zones in the LCD polygon, the apportioned value of housing count for 1990 (again,

maintaining the 2000 geography) is:

ci~api ð2Þ

For the M–1 relationship, we simply summed the extensive variable (i.e. count of

houses) in 1990 over the LCD polygon to maintain compatible geography with

2000.

In the M–M case (figure 6), >2 zones in both 1990 and 2000 had to be aggregated;

however, our dasymetric method was similar to that for the 1–M relationship except

that we first summed the extensive variable for the 1990 components in the LCD

polygon. Therefore, we let a represent the extensive variable referenced to the n

zones in A composing an LCD polygon. We let b represent the extensive variable

referenced to the m zones in B composing the same LCD polygon. The total

expected value of a for the LCD polygon is:

Ta~
Xn

i~1

ai ð3Þ

and for b

Tb~
Xm

i~1

bi ð4Þ

Now, we let the apportioned value ci5Tapi.
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In some cases pi may be undefined because Tb50. This happens when the

extensive variable in 2000 totals 0 in a given LCD polygon. In such a case, one could

set the apportioned value ci50 or ci5Ta. For density calculations, an LCD

polygon’s area never includes water block areas. In our work, when the value

referenced to a zone in 2000 is 0 in an LCD polygon that is not water, ci5Ta. If the

zone is water, then ci50.

3. Results

3.1 No processing and areal weighting

The distribution of census block sizes was strongly skewed, and the vast majority of

census blocks in both 1990 and 2000 were smaller than 250 m2 (0.025 km2).

However, the resolution of the 2000 blocks was much finer than that of the 1990

blocks, with more than 58,300 blocks smaller than 250 m2 in 2000 compared to

approximately 46,500 such blocks in 1990 (figure 7). Although the data resolution

for the 1990 housing density map produced through areal weighting was finer than

the original 1990 census boundary map, the maps look very similar (figure 3A and

B).

With no processing and with areal weighting, a large area went from .0–2

housing units/km2 in 1990 to 0 housing units/km2 in 2000. With no processing, 36%

of the land in the state showed an apparent housing density change during the

decade, of which 75% was due to a housing density decline. With areal weighting,

38% of the landscape changed with 80% due to a housing density decline. Much of

Figure 6. Conceptual diagram of the dasymetric method in which 1990 housing density is
allocated into 2000 census block boundaries according to the distribution of 2000 housing
density. The houses in each unit of the finer-resolution 2000 boundaries contained within the
LCD (least common denominator, or smallest combined area between 1990 and 2000 census
block boundaries) were divided by the sum of houses in the 2000 LCD to determine their
proportional distribution. The total number of houses in the 1990 LCD was then multiplied
by these proportions to distribute the 1990 housing density into the 2000 boundaries.
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this apparent decline occurred in the western part of the state in areas interspersed

with areas of growth (figure 8). For both methods, there was minimal change in

either direction among higher housing density classes (figure 9).

3.2 Aggregation

Although the 1990 census block boundaries were coarser than the 2000 boundaries,

the boundaries used for the 1990 housing density data for the aggregation method

(the LCD polygons) were coarser than the 1990 data. For the LCD polygons, only

approximately 35,100 blocks were smaller than 250 m2, compared to 46,500 blocks

in 1990 and 58,300 blocks in 2000 (figure 7). Like the areal weighting method, the

1990 map showing results of the aggregation procedure looks very similar to the

original 1990 census block boundaries map, despite the differences in resolution

(figure 3C).

Because the 2000 map resulting from the aggregation method was also at the

resolution of the LCD polygons, there was much less indication of change between

1990 and 2000 than there was with no processing or areal weighting. Apparent

housing density decline was substantially minimized with aggregation, particularly

in the eastern part of the state. However, there was also a strong expansion in the

area where housing density increased (figure 8). The aggregation method indicated a

housing density change in 11% of the land in the state from 1990 to 2000. Of this

change, only 4% was decline from .0–2 to 0 housing units/km2. Approximately 60%

of the land in the state stayed in the .0–2 housing units/km2 class from 1990 to

2000; a relatively small area changed from one density class to another using this

method (figure 9).

Figure 7. Histogram showing the number of census blocks within different size ranges based
on three levels of resolution: (A) least common denominator (LCD) polygons, (B) 2000 census
boundaries, and (C) 1990 census boundaries. The histogram is truncated to show only the
small block sizes, which constitute the majority of blocks for all datasets.
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3.3 Dasymetric

Like the areal weighting method, the dasymetric procedure redistributed the 1990

housing units to the 2000 census blocks so there were approximately 58,300 blocks

smaller than 250 m2, compared to 46,500 blocks in 1990 and 35,100 blocks using the

LCDs as boundaries (figure 7). The 1990 housing density map produced through

dasymetric estimation looked different from the other 1990 maps, with substantially

more area in the 0 housing units/km2 class (figure 3D). This 1990 map looked the

most similar to the 2000 census block map.

Like the aggregation method, the dasymetric procedure indicated minimal change

between 1990 and 2000. In fact, the dasymetric method was more conservative than

aggregation; less area increased in housing density (figure 8). Only 9% of the land in

the state experienced either an increase or a decrease in housing density from 1990 to

2000 using the dasymetric procedure, and of that change, 4% was due to housing

density decline. Whereas approximately 60% of the land stayed in the .0–2 housing

units/km2 class from 1990 to 2000 using aggregation, approximately 30% of the land

Figure 8. Percentage change in housing density in Oregon between 1990 and 2000 using four
methods: (A) no processing, (B) areal weighting, (C) aggregation, and (D) dasymetric. Change
in the 1–0% class indicates that housing density declined from 1990 to 2000; the 0% class
indicates that housing density remained the same over time; and the remaining classes indicate
different percentage increases in housing density from 1990 to 2000.
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stayed in that class using the dasymetric method, while more than 50% of the land

stayed in the 0 housing units/km2 class (figure 9).

4. Discussion

Estimates of change in housing density varied in the state of Oregon, showing

substantial sensitivity to the method of data interpolation used to reconcile 1990

and 2000 census block boundaries. All methods involved some level of trade-off,

including analytical difficulty, data resolution, magnitude or bias in direction of

change. It is important for analysts to recognize that housing density

change estimates are sensitive to the method of interpolation and to choose between

the trade-offs in accordance with their specific objectives and research questions.

The resolution, completeness, and accuracy of US Census data is consistently

improving; one of the advantages of the 2000 census data over the 1990 data is the

finer resolution of block boundaries (Krieger 2006, Hammer et al. 2007). Therefore,

from the perspective of data resolution, the areal weighting method provided

advantages over the no processing alternative because the 1990 data were

redistributed into the finer-resolution boundaries of the 2000 data. Areal weighting

was also relatively easy to calculate. With an area as large as the state of Oregon, a

simple method greatly enhances efficiency. Nevertheless, errors in housing density

change estimates can become substantial across such a large area.

Despite the improvement in resolution stemming from the 2000 census block

improvements, the widespread housing density decline observed using areal

Figure 9. Transition matrices representing how much area changed from 1990 housing
density classes to 2000 housing density classes using four methods: (A) no processing, (B)
areal weighting, (C) aggregation, and (D) dasymetric procedure.
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weighting was likely an artifact of the processing method rather than actual loss in

housing. Widespread housing density decline is unrealistic, except for cases of, for

example, natural disasters, the effects of which tend to be limited in space and/or

time (e.g. wildfires and hurricanes are almost always followed by rebuilding). Recent

analyses have shown that the only places where sustained, substantial loss of

housing in the US occurs are in areas of widespread property abandonment at the

center of large urban areas that are decentralizing (Lee and Leigh 2005); these areas

affect a very small proportion of the landscape compared to areas where houses

remain or are becoming more numerous. Urban core property abandonment is even

more unlikely in Oregon because the state encourages new development within city

centers (Wassmer and Baass 2006).

The dramatic housing density decline indicated by areal weighting is likely due to

the increase in spatial resolution of the 2000 blocks combined with the assumption

that housing data were homogenously distributed within the source and target

zones. For example, some of the 2000 block boundaries may have been updated to

delineate small neighborhoods located within large, sparsely populated areas. Thus,

when a large polygon with low housing density in 1990 was split into two polygons

in 2000, one of the 2000 polygons would be comparatively densely populated with

houses, whether or not there was any change in houses on the ground, while the

other would have no houses in the area that was formerly represented as populated

with low density housing. An overlay of the 1990 and 2000 boundaries in the second

polygon would therefore show a false decline in housing density (when in reality, it

was probably undeveloped in both 1990 and 2000).

The primary advantage of using the aggregation method was that housing density

change estimates were much more conservative than those observed in areal

weighting. Minimal housing density decline occurred because aggregating the

boundaries allowed us to directly analyze the data through a 1–1 relationship, and

data did not have to be interpolated from one resolution into another. Aggregation

was also relatively straightforward in terms of analytical complexity.

Although aggregation avoided the drawbacks of interpolating over census blocks

of different sizes, the weakness of the approach was its coarse resolution. The

substantial expansion of the 0–50% growth category may be an artifact of

summarizing and comparing housing data over areas that exceeded the size of the

census boundaries. In other words, increases in housing density that really only

occurred in smaller areas were attributed to the entire extent of the LCDs.

Therefore, while aggregation did produce a much more conservative estimate of

change than areal weighting, the distortions introduced by the coarse resolution may

affect the results of the change analysis and limit its utility where grain size is

important.

Unlike the other two methods of interpolation, the dasymetric approach allowed

us to calculate conservative estimates of housing change within the fine-resolution

boundaries of the 2000 census blocks. This approach actually capitalized on the

uniquely persistent nature of housing development and enabled us to assume that

the 1990 housing density was distributed proportionally to the 2000 housing density.

When population data are compared over time, the distributions of the initial and

final populations across a newly divided block (1–M) are often independent because

people are dynamic and migrate. Houses, however, remain in place over time; their

final distribution depends on their initial distribution. Therefore, although

processing housing data for the dasymetric approach was slightly more complex
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than it was for the other reconciliation methods, the bootstrapping approach of

using data internal to the process of investigation kept the methods much simpler

than if we were working with population or its characteristics.

One special feature of census data that facilitated both the aggregation and the

dasymetric interpolation methods was the limit on the extent of the 1990–2000 LCD

polygons. All census data below the county level sums to the county level, so for any

census reconciliation at a multi-county scale, the county is the largest possible LCD

polygon (assuming counties do not change, which is almost always true). If there

were no shared, common boundaries limiting the possible extent of aggregation

necessary to find the LCD polygons, our methods for interpolating between census

boundaries would be more error-prone, and even impractical. However, the

accuracy of areal interpolation methods is generally better with smaller source and

target zones that are similar in shape (Sadahiro 2001). Therefore, interpolation

across finer-scale census boundaries should be expected to produce more reliable

change analyses.

In most states, census boundaries will probably increase in resolution, reflecting

continuing improvement in the accuracy and precision of housing counts over

time (Krieger 2006), as they did in most of the state of Oregon between 1990 and

2000. Therefore, the dasymetric method of redistributing census data from an

earlier year based on the housing distribution of more current years should

generally be an appropriate method for census boundary reconciliation across the

country. However, users should be careful if more relationships in their areas of

analysis are M–1 (i.e. the resolution becomes coarser over time). Another

consideration is that, because census boundaries are usually altered to account for

new housing growth, it is inevitable that the areas that change the most are often

also those most prone to error due to interpolation across incompatible zones.

This artifact of data collection compounds the problem of trying to accurately

estimate and evaluate change over time. However, boundary changes in the US

Census from 1990 to 2000 may be an exception to this rule because many changes

in census boundaries occurred in areas with very little housing growth, as was the

case in central and eastern Oregon. In other words, there was widely dispersed

growth across the vast majority of the state, but in most cases, the magnitude of

change was not as substantial as the amount of area that changed. One reason for

these widespread changes may be that the 1990 Census was the first to be released

in GIS format, and many improvements were made to increase the resolution for

the 2000 Census data; so the 2000 Census represented a major improvement. This

may also explain why the dasymetric approach was particularly useful for these

data because it minimized potential errors in calculation across such a large

geographic extent.

Housing development trends are expected to continue, and the amount of

developed land in the United States is expected to increase by 79% in the next 25

years (Alig et al. 2004). Therefore, it will continue to be important for scientists to

understand where and how housing growth is occurring so that land-use planners

and conservation biologists can anticipate how to best develop comprehensive

regional plans (Lenth et al. 2006). All of our methods involved some level of trade-

off, and housing change estimates were sensitive to the method of interpolation.

Although boundary resolution and ease of processing are important factors to

consider when choosing a method of interpolation, the dasymetric bootstrapping

approach may be particularly useful for assessing housing growth across changing

Assessing housing growth 873



census boundaries because it provides the most conservative estimate of change and

minimizes issues related to apparent housing density decline when census units

become finer over time.
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