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Abstract

We tested image texture as a predictor of bird species richness in a semi-arid landscape of New Mexico. Bird species richness was summarized
from 10-min point counts conducted at 12 points within 42 plots (108 ha each) from 1996 to 1998. We calculated 14 first- and second-order
texture measures in eight different window sizes on a set of digital orthophotos acquired in 1996. For each of the 42 plots, we summarized mean
and standard deviation of each texture value within multiple window sizes. The relationship between image texture and average bird species
richness was assessed using linear regression models. Single image texture measures such as the standard deviation described up to 57% of the
variability in species richness. Coupling multiple measures of texture or coupling elevation with a single texture measure described up to 63% of
the variability in bird species richness. Models incorporating two measures of texture and coarse habitat type described 76% of the variability in
bird species richness. These results show that image texture analysis is a very promising tool for characterizing habitat structure and predicting
patterns of species richness in semi-arid ecosystems. This method has several advantages over methods that rely on classified imagery, including
cost-effectiveness, incorporation of within-habitat vegetation variability, and elimination of errors associated with boundary delineation.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Global biodiversity is severely declining as a result of an
unprecedented rate of species extinction (Pimm et al., 1995).
The main cause for these extinctions is change in human land-
use (Vitousek, 1994; Sala et al., 2000). The increasing pressure
on ecosystems and its consequences on their integrity and
patterns of biodiversity is a cause for growing concern. In order
to develop effective management scenarios and identify areas of
high conservation priority, patterns of biodiversity and the
ecological drivers that create those patterns must be identified.
Remote sensing is a great tool for this, especially if new tech-
niques with greater accuracy and efficiency are developed.

The close link between land-use change and biodiversity
mainly lies in the fact that land-use substantially modifies habitat
structure. This results in shifts in habitat utilization following
structure-altering disturbance, accompanied by changes in
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species occurrence patterns (e.g., Bolger et al., 1991). Habitat
structure from fine- to broad-scales influences biodiversity. At a
fine scale, vegetation structure has a strong impact on bird
assemblages (Bersier & Meyer, 1994). At broader scales,
landscape heterogeneity influences the spatial pattern of species
richness for many taxonomic groups, including birds and
amphibians (Atauri & de Lucio, 2001). Species' responses to
land-use change and habitat structure (e.g., forest fragmentation)
varies depending on their area requirements and ability to cross
gaps (Dale et al., 1994). In this study, we developed methods to
predict bird species richness, a measure of biodiversity, using
habitat structure measures from remotely sensed data.

Bird communities are good indicators of biodiversity and
habitat quality, partly because they encompass a wide range of
niches and life-history requirements (Gregory et al., 2003).
Birds are very sensitive to changes in habitat structure and
composition; they respond strongly to fine-scale factors such as
vegetation structure (Bersier & Meyer, 1994; Cody, 1981;
MacArthur & MacArthur, 1961), and to broad-scale factors
such as landscape composition and configuration (Villard et al.,
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1999). Bird community composition can also be relatively
easily assessed for small areas, since birds are identifiable by
both auditory and visual cues, and standardized techniques exist
(Bibby et al., 2000). However, monitoring avian communities
on the ground is time consuming, and often limited to small
spatial extents. Thus, detailed knowledge about biodiversity
patterns at a regional level is expensive to obtain. One possible
solution is to use remote sensing technologies because they
cover broad spatial extents yet provide detailed attribute
characterization (Wulder et al., 2004).

There are two main approaches to mapping spatial patterns
of biodiversity using remote sensing (Nagendra, 2001; Turner
et al., 2003): 1) direct mapping of species, and 2) indirect
mapping of habitat via image classification. The direct mapping
of species consists of mapping individual plants, or groups of
plants, existing in spatially contiguous areas that can be
distinguished by the remote sensor (Nagendra, 2001). Examples
of direct mapping of species include mapping tree crowns using
high-resolution imagery (Gougeon, 1995), or mapping king
penguins (Aptenodytes patagonicus) using SPOT images in the
southern Indian Ocean (Guinet et al., 1995). Another example
includes mapping Adélie penguin rookeries using Landsat TM
imagery in Antartica (Schwaller et al., 1989). Penguin rookeries
show unique spectral signatures, which allow estimating
rookery area and population size. These methods allow accurate
mapping of species; however, they are mostly limited to large,
colonial, or sessile organisms such as seabirds or trees.

The second method for mapping patterns of biodiversity
using remote sensing is indirect mapping (Nagendra, 2001). It
consists of predicting species distribution using habitat maps
derived from remotely sensed data based on knowledge of
habitat requirements, i.e., on-the-ground observation document-
ing the distribution and abundance of target species (Gottschalk
et al., 2005). The remotely sensed imagery is classified into
habitat classes that are important for a given species or species
assemblage. For example, in a boreal agricultural-forest mosaic,
landscape indices calculated from Landsat Thematic Mapper
(TM) imagery are good predictors of bird species richness
(Luoto et al., 2004). In a semi-arid landscape of New Mexico,
land cover class area derived from Landsat TM imagery
explains the pattern of black-throated sparrow (Amphisphiza
bilineata) abundance and nest success (Pidgeon et al., 2003).
Bird species distribution can also be predicted through the Gap
Analysis Program (GAP) of the US Geological Survey (USGS),
which involves the use of species range maps coupled with
classified imagery and information on species habitat require-
ments derived from empirical data (Scott et al., 1996).

The use of cover classes to map species distributions and
assemblages has three main limitations for our purposes. The
first problem relates to the fact that traditional image
classification methods often overlook within-habitat heteroge-
neity. This may not represent a problem where there is low
variability within patches in a landscape, e.g., a landscape
composed of distinct forest patches embedded in an agricultural
matrix. However, where there is a high level of variability
within cover types, e.g., in semi-arid landscapes, the lack of
information on within-habitat variability is a major drawback.
The second potential problem of habitat classification relates
to the difficulty of delineating boundaries at transition zones
between different cover types, i.e., ecotones (Fortin et al.,
2000). This uncertainty may be a significant source of error
resulting in reduced classification accuracy, especially in areas
where patches of several cover types with broad ecotones form a
heterogeneous mosaic. Last, but not the least, image classifi-
cation is a time-consuming and expensive process, particularly
in habitats where extensive ground truthing is required to
discriminate between different habitat types.

Other potential drawbacks associated with the use of classified
imagery include: 1) a high variability in the land-cover maps
derived from multiple independent classifications of the same
area, and 2) an often poor correspondence between classified land
cover and known species–habitat relationships.

A third way of mapping biodiversity, which has rarely been
used yet addresses some of the aforementioned issues regarding
the use of classified images, is to relate spectral radiance recorded
from satellite sensors and species distribution obtained from field
observation (Nagendra, 2001). The use of raw satellite imagery
data to predict components of biodiversity has been attempted in
several ecosystems and shows great promise. In the Sahel region
of northern Senegal, a combination of the integrated vegetation
index (iNDVI) and the landscape diversity index predicts bird
species diversity well (Nøhr & Jørgensen, 1997). Other measures
from Landsat Multispectral Scanner (MSS) and Landsat TM,
such as Near Infrared reflectance (NIR) are significantly
correlated with Dunlin (Calidris alpina) abundance (correlation
between −0.79 and −0.68, pb0.001) in the Caithness region of
Scotland (Lavers &Haines-Young, 1997). Dunlin abundance and
distributionmaps built from amodel that incorporate NIR data are
used to predict the impact of current land-use and conservation
policies in the same area of Scotland (Lavers & Haines-Young,
1996). NDVI and short-wave infrared (band 5) derived from
Landsat 7 Enhanced Thematic Mapper Plus (ETM+) effectively
predict the regional occurrence of three species of warblers in
Michigan (Laurent et al., 2005). Because it relates to vegetation
greenness, NDVI is also used to assess habitat suitability for
ungulates (hartebeest and wildebeest) and ostrich (Struthio
camelius) in the Kalahari of Botswana (Verlinden & Masogo,
1997). Information from Landsat TM can be coupled with digital
elevation models (DEM). In northeast Scotland, Aspinall and
Veich (1993) used a Bayesian analysis approach to map Curlew
(Numenius arquata) habitat by building relationships between the
occurrence of Curlew and the Landsat bands and DEM values.

Since bird species richness and biodiversity are closely
related to habitat structure (MacArthur, 1972; MacArthur &
MacArthur, 1961), image-based measures of habitat heteroge-
neity (i.e., components of structure) may improve predictive
models of species richness based on spectral values. Image
texture may be a good measure of habitat heterogeneity.
Considering the limitations associated with the use of classified
imagery to predict patterns of biodiversity in some ecosystems,
we developed new tools for monitoring species richness at
broad scales based on unclassified, raw imagery.

Images are composed of tone (i.e., spectral information) and
texture (i.e., tonal variability in a given area), two interdependent
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characteristics (Baraldi & Parmiggiani, 1995; Harralick et al.,
1973). The texture of an image contains important information
about the spatial and structural arrangement of objects (Tso &
Mather, 2001). There are two classes of texture measures: first-
order (occurrence), and second-order (co-occurrence) statistics
(Harralick et al., 1973; Mihran & Jain, 1998). First-order
statistics are derived from the histogram of pixel intensities in a
given neighborhood (i.e., a moving window), but ignore the
spatial relationships of pixels. The standard deviation or mean of
pixel values are examples of first-order measures (Mihran &
Jain, 1998). Second-order statistics (e.g., angular second
moment, entropy, sum of squares variance) are calculated from
the grey-level co-occurrence matrix (GLCM), which indicates
the probability that each pair of pixel values co-occur in a given
direction and distance (Harralick et al., 1973; Mihran & Jain,
1998). The three second-order texture measures least correlated
Fig. 1. A) Study area location, a
with each other are angular second moment, contrast, and
correlation (Baraldi & Parmiggiani, 1995). These three statistics
are consequently the most relevant for feature discrimination.
Other methods used to calculate image texture include semi-
variograms, Fourier transform, and fractal dimensions (Tso &
Mather, 2001). In this study we focused on first- and second-
order measures only.

The usefulness of first- and second-order statistics in the
detection of structural patterns from satellite imagery has led to
their application in image classification and segmentation
(Franklin et al., 2000; Coburn & Roberts, 2004; Puissant
et al., 2005). The angular second moment is used in surface
pattern analysis of the boreal environment of eastern Canada
(Peddle & Franklin, 1991). Second-order texture measures
increase forest classification accuracy up to 77% when they are
used to characterize forest objects from high-resolution imagery
nd B) study plot locations.
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(Hay et al., 1996; Zhang et al., 2004). Texture measures predict
up to 43% of the variability in hardwood forest leaf area index
(LAI) in New Brunswick, Canada (Wulder et al., 1998). Image
texture is also successful at distinguishing two different grass-
land management practices in Saskatchewan (Guo et al., 2004).

Although there have been a number of interesting applica-
tions of texture analysis for image classification, very few
attempts have been made to explicitly assess the spatial hetero-
geneity of habitat and link image texture to other ecological
variables. To our knowledge, Hepinstall and Sader (1997) were
Fig. 2. DOQQs (1 m resolution) of the seven main habitat types: A) black grama, B
pinyon–juniper.
the first to integrate image texture, along with image spectral
value, in a predictive model of bird occurrence. These authors
found image texture to be useful in predicting the presence or
absence of seven bird species (e.g., song sparrow (Melospiza
melodia), yellow warbler (Dendroica petechia), black-throated
green warbler (Dendroica virens)) in Maine. Six of the seven
species were positively correlated with image texture. The
common characteristic among the six species is their association
with highly heterogeneous habitats. This suggests that image
texture characterizes the heterogeneity in vegetation and habitat
) mesa grassland, C) creosote, D) whitetorn, E) sandsage, F) mesquite, and G)



Table 1
Image texture acronym description and formulae

Type of
measures

Texture measure Formula⁎

1st order
measures

Standard
deviation

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

ðxk−lÞ2

K

vuut

Where K=number of grey tone values
μ=mean grey tone value

Range RG=max{X}−min{X}
Where X=x1, x2, …, xk

Minimum MIN=min{X}
Maximum MAX=max{X}
Mean

AVG ¼

P
k

xk

K

2nd order
measures

Angular second
moment

ASM ¼
X
i

X
j

fpði; jÞg2

Where p(i, j) is the (i, j)th entry of the
normalized GLCM matrix,=P(i,j) /R, where R
is a normalizing constant

Contrast
CON ¼

XN�1

n¼0

n2
XN
i¼1

XN
j¼1

pði; jÞ
( )

ji−jj¼n

Correlation

COR ¼

P
i

P
j
ðijÞpði; jÞ−lxly
rxry

Where μx, μx, σx, and σy are the means and
standard deviation of px and py−px and py are
the marginal probabilities of x (entries in rows
of normalized GLCM) and y (entries in
columns)

Dissimilarity
DIS ¼

XN�1

n¼0

n
XN
i¼1

XN
j¼1

pði; jÞ
( )

Entropy ENT ¼ −
X
i

X
j

pði; jÞlog ðpði; jÞÞ

Information
measures of
correlation

ICM1 ¼ HXY−HXY1
maxfHX;HYg

ICM2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−exp½−2:0ðHXY2−HXYÞ�Þ

p

HXY ¼ −
X
i

X
j

pði; jÞlogðpði; jÞÞ

HX=entropy of px
HY=entropy of py

HXY1 ¼ −
X
i

X
j

pði; jÞlogfpxðiÞpyð jÞg

HXY2 ¼ −
X
i

X
j

pxðiÞpyð jÞlogfpxðiÞpyðjÞg

Inverse
difference
moment

IDM ¼
X
i

X
j

1

1þ ði−jÞ2 pði; jÞ

Table 1 (continued)

Type of
measures

Texture measure Formula⁎

2nd order
measures

Sum of squares
variance

SSV ¼
X
i

X
j

ði−lÞ2pði; jÞ

⁎From Harralick et al. (1973).

303V. St-Louis et al. / Remote Sensing of Environment 105 (2006) 299–312
types, and can predict the occurrence of some species. No
studies have yet quantified the relationship between image
texture and species richness or other measures of biodiversity.
This is unfortunate because the statistical properties of image
texture measures suggest that they could be powerful tools to
discriminate important habitat features for wildlife species,
particularly for breeding birds, and to assess spatial patterns of
biodiversity.

The main objective of our study was to evaluate image
texture as a predictor of bird species richness in a grassland- and
shrubland-dominated landscape. Specifically, we: 1) derived
first- and second-order texture measures based on digital ortho-
photo quarter- quadrangles (DOQQs) at several scales, 2)
evaluated the relationship between species richness and image
texture using linear regression models, and 3) determined which
window sizes and which statistical measures were the best
predictors of species richness. Our approach using image
textures to predict species richness avoids some of the potential
drawbacks inherent in the use of classified remote sensing
images (e.g., ignoring fine-scale heterogeneity, high time
requirements), and fills the need for obtaining information on
the spatial structure of habitat from raw images.

2. Data and methods

2.1. Study area

Our study was conducted on the McGregor Range of the Fort
Bliss Military Reserve, which occupies 282,500 ha of the
northern Chihuahuan Desert of NewMexico (Fig. 1A). The arid
climate is characterized by average minimum and maximum
temperatures for the May–July time period ranging from 11 to
19 °C and 30 to 35 °C respectively (Western Regional Climate
Center, 2005). The average monthly precipitation for the same
time period ranges between 13 and 44 mm. The elevation ranges
from 1163 to 2332 m above sea level.

McGregor Range is characterized by seven main habitat
types, which were obtained from a classification of vegetation
types developed by Melhop et al. (1996) from multiple Landsat
TM images. Major habitat types include two grasslands (black
grama and mesa grassland), four shrublands (creosotebush,
mesquite, sandsage, and whitethorn), and one tree-dominated
(pinyon–juniper) habitat.

Black grama is dominated by black grama grass (Bouteloua
eriopoda), with scattering of small shrubs, e.g., cane cholla
(Opuntia imbricata) and Yucca spp. Mesa grassland is
dominated by blue grama (Bouteloua gracilis), which occurs
in combination with black grama, hairy grama (Bouteloua
hirsute), and threeawn grass (Aristida spp.) among others. The



Fig. 3. Example of standard deviation filter applied to one of the 42 108-ha plots (A) with B) a 15×15 and C) a 31×31 moving window.

Fig. 4. Summary of image texture values across habitat types; example for mean
sum of squares variance (SSV) in a 51×51 moving window. The horizontal bar
represents the median, the box represents the first and third interquartiles, and
the whiskers represent the range of data.
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DOQQs of the black grama and mesa grasslands have very low
contrast, i.e., low texture (Fig. 2A and B).

Creosote shrublands are dominated by creosote bush (Larrea
tridentata), and are characterized by low shrub species richness
and low ground cover. Creosote habitat exhibits more
variability in grey tone values than the two grasslands, but is
still fairly homogeneous with low ground cover (Fig. 2C).
Whitethorn shrubland is dominated by whitethorn acacia
(Acacia constricta), and several species of shrub and cacti.
There is a wide range of grey tone values as well as high
variability in the spatial distribution and clustering of grey tones
in this habitat type (Fig. 2D). Sandsage habitat is dominated by
the relatively dense shrub sand sagebrush (Artemisia filifolia),
with many sub-dominants including soaptree yucca, little leaf
sumac (Rhus microphylla), four-wing saltbush (Atriplex
canescens), and mesquite. The DOQQs of sandsage exhibit
high level of contrast induced by the different cover types, but
very regular spatial distribution of grey tones (Fig. 2E).
Mesquite shrublands are dominated by mesquite (Proposis
spp.), occurring mainly as a multi-stemmed shrub which creates
dunes by entrapping drifting sand (Hennessy et al., 1983). This
shrubland includes a scattering of soaptree yucca (Yucca elata),
broom snakeweed (Gutierrezia sarothrae), and other small
shrubs in the interdunal area. This habitat type has very high
texture in the DOQQs, with dark pixels representing the
mesquite shrubs and bright pixels representing soil (Fig. 2F).

Finally, pinyon–juniper habitat is dominated by Colorado
pinyon (Pinyon edulis), one-seed juniper (Juniperus mono-
sperma), and alligator juniper (Juniperus deppeana). This
habitat ranges from savanna, when there are fewer than 320
individual trees per hectare, to woodlands with an almost closed
canopy (Dick-Peddie, 1993). This habitat exhibits the highest
texture and contrast, and individual trees are visible (Fig. 2G).
For more details on habitat types of the McGregor range, refer
to Pidgeon et al. (2001, 2003), and Pidgeon (2000).

2.2. Bird data

Bird data were summarized over forty-two 108 ha plots
between May 1 and June 7, 1996 through 1998 (Fig. 1B). Six
plots were located randomly within each of the seven habitat
classes with a surrounding buffer of at least 50 m of contiguous
habitat (Pidgeon et al., 2003). Twelve points located 300 m
apart in each plot were sampled four to five times a year by
seven observers. Observers took part in an intensive training
and calibration period prior to the field season. Plots were
rotated among observers to avoid sampling bias. All birds seen
or heard within 150 m of each point were recorded during 10-
min periods. A 150 m distance is considered appropriate in open
habitats (Martin et al., 1997). The tally of species from the 4–5
annual visits across the twelve points was used as a measure of
species richness for each plot. We tested for and found no year
effect on species richness (ANOVA for repeated measures;
unpubl. data), and therefore used the average species richness in
further analyses. An average of 24 species was detected at each
of the 108 ha plot.

2.3. Image texture analysis

We calculated first- and second-order texture measures for
each of the 42 plots based on USGS DOQQs with a spatial
resolution of 1 m. Images were acquired in 1996. Although plot
locations generally avoided roads, in a few instances minor dirt



Table 2
Pearson correlation coefficients between the mean of first- and second-order texture measures calculated in the 3×3 moving window†

Correlation levels were similar for the other window sizes.
† Significance codes: 0 ‘⁎⁎⁎’ 0.001 ‘⁎⁎’ 0.01 ‘⁎’ 0.05 ‘a’ 0.1.
†† First-order texture measures: SD = standard deviation, RG = range, MIN = minimum, MAX = maximum, AVG = mean.
††† Second-order texture measures: ASM = angular second moment, CON = contrast, COR = correlation, DIS = dissimilarity, ENT = entropy, ICM1 = information
measure of correlation 1, ICM2 = information measure of correlation 2, IDM = inverse difference moment, SSV = sum of squares variance.

Table 3
Correlation between the different window sizes at which mean of first-order
standard deviation was calculated

Lower diagonal indicates Pearson's correlation coefficient. All results are highly
significant (pb0.0001).
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roads fell within the plot boundaries. Roads were masked from
the original images because we wanted the texture measures to
represent habitat heterogeneity of the vegetation only. We
calculated five first-order texture measures (minimum, mean,
maximum, range and standard deviation; Table 1), using eight
different moving window sizes, ranging from 3×3 to
101×101 pixels (e.g., Fig. 3). These window sizes were chosen
to cover a wide range of sizes corresponding roughly to 9 m2 to
10,000 m2 on the ground. First-order texture measures were
computed in ESRI® ArcGIS™ 9.1 (ESRI, 1999–2005).

We also calculated nine second-order texture measures,
based on the GLCM (Harralick et al., 1973), using the same
eight moving window sizes. Second-order measures were
calculated in Matlab® 7.0.4.365 (TheMathWorks, Inc., 1984–
2005) with the image processing toolbox, using the Condor®
Project (http://www.cs.wisc.edu/condor/). The second-order
measures considered were: angular second moment, contrast,
dissimilarity, correlation, sum of squares variance, inverse
difference moment, entropy, and information measures of
correlation 1 and 2 (Table 1). With the exception of the
information measures of correlation, the variables listed above
are considered to be the most relevant texture measures for
image classification (Baraldi & Parmiggiani, 1995). The texture
measures were calculated in four directions (0°, 45°, 90° and
135°) and averaged, as suggested by Harralick et al. (1973).

For the fourteen texture measures, we obtained texture
images at each of the 42 plots, in which each pixel contains
texture information. We wanted to relate bird species richness
with measures of image texture. To summarize the fourteen
texture measures at each of the 108 ha study plots, we calculated
two statistics: the mean and standard deviation of pixel values
from the texture images. The mean calculates the average
texture value at each plot, whereas the standard deviation is a
measure of variability of texture for each of those plots. The
mean and standard deviation of texture measures were used in
the statistical analyses.

2.4. Statistical analyses

The relationship between species richness and texture
measures was first assessed using univariate models that related
the mean and standard deviation of each texture measure to
species richness for each window size. We then used multiple
regression models to predict species richness as a function of
multiple texture measures. For the univariate linear models we
conducted model selection based on the information theory
approach of Burnham and Anderson (2002). For both the
univariate and multiple regression models, we assessed how
well the models performed using adjusted R2 values. All
statistical analyses were conducted in R 2.2.0 (R Development
Core Team, 2005).

http://www.cs.wisc.edu/condor/


Table 4
Results from univariate linear regression models relating species richness to single image texture at different moving window sizes

Summary statistic Measure
type

Texture
measure

Window size Best
model
AICc

Best
model
adjusted
R2

Best
model
p-value

3×3 7×7 15×15 21×21 31×31 51×51 81×81 101×101

Standard deviation 1st order† SD 0.26 0.36 0.20 238.34 56.67 b0.001⁎

RG 0.57 256.56 33.14 b0.001⁎

MIN 0.42 0.19 0.36 257.35 31.87 b0.001⁎

MAX 0.26 0.19 0.13 0.18 253.18 38.31 b0.001⁎

AVG 0.40 245.50 48.62 b0.001⁎

2nd order†† ASM 0.52 269.75 8.46 0.035
CON 0.12 0.26 0.20 0.16 0.12 263.34 21.43 0.001
COR 0.68 0.26 261.43 24.93 b0.001
DIS 0.21 0.33 0.23 0.13 255.64 34.60 0.002
ENT 0.39 0.51 264.45 19.32 b0.001
ICM1 0.75 241.21 53.61 b0.001⁎

ICM2 0.21 0.30 0.27 249.15 43.95 b0.001⁎

IDM †††

SSV 0.32 0.40 0.23 240.73 54.13 b0.001⁎

Mean of texture value 1st order SD 0.15 0.27 0.36 260.61 26.37 b0.001⁎

RG 0.10 0.12 0.16 0.22 0.26 264.01 20.17 b0.001
MIN 0.11 0.14 0.17 0.18 0.18 0.18 264.43 19.36 b0.001
MAX 0.66 265.47 17.33 0.004
AVG

2nd order ASM 0.10 0.12 0.16 0.26 0.27 264.90 18.44 0.003
CON 0.13 0.13 0.13 0.12 0.13 0.12 0.12 0.13 270.22 7.44 0.044
COR 0.28 0.46 259.44 28.40 b0.001
DIS 0.13 0.13 0.13 0.12 0.13 0.12 0.12 0.13 269.51 8.99 0.030
ENT 0.28 0.38 262.25 23.44 b0.001
ICM1 0.66 254.80 35.88 b0.001⁎

ICM2
IDM 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 269.77 8.43 0.035
SSV 0.27 0.43 261.88 24.10 b0.001

Cell values represent the AICc w obtained for each individual window size for a given texture measure, for all models whose ΔAICc was smaller than 2. The AIC
weight of the best moving window for a given texture is in bold. Correspondingly, values of AICc, adjusted R2 and p-value are provided. The texture measures that
best predicted species richness are underlined.
† First-order texture measures: SD = standard deviation, RG = range, MIN = minimum, MAX = maximum, AVG =mean.
†† Second-order texture measures: ASM = angular second moment, CON = contrast, COR = correlation, DIS = dissimilarity, ENT = entropy, ICM1 = information
measure of correlation 1, ICM2 = information measure of correlation 2, IDM = inverse difference moment, SSV = sum of squares variance.
††† AICc is not shown for the models that were not significant from the linear regression analysis.
* Indicates cases where the model was still significant after Bonferonni correction (i.e., pb0.0002).
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2.4.1. Image texture measures as predictors of species richness

2.4.1.1. Single measure of texture. The relationship between
the mean and standard deviation of a given texture measure and
species richness was assessed using univariate linear models for
each window size. First, the corrected form of the Akaike's
Information Criterion (AICc ) was calculated for each fitted
linear model (Hurvich & Tsai, 1989). The use of AICc is
recommended for small sample sizes, specifically when the
number of samples (n=42 in our case) divided by the number of
parameters (k=3 for the univariate linear models) is smaller
than 40. For a given texture measure (e.g., angular second
moment), the window size that best predicted species richness
was the one for which the univariate linear model exhibited the
lowest AICc value. Second, models were compared using
ΔAICc and AICc weights to evaluate if some window sizes are
more successful than others at predicting species richness for a
given texture measure. ΔAICc's between 0 and 2, and high
AICc weights indicate strong support for those models relative
to the other models considered (Burnham & Anderson, 2002).
We tested for the presence of spatial autocorrelation in the
residuals and found no spatial autocorrelation or spatial trend.
Given the large number of univariate models fitted (i.e., 14
texture measures * two summary statistics * eight window
size=224 univariate models), we used the p-value as well as
the Bonferonni adjusted p-value to evaluate the significance of
the best univariate models. Using the Bonferonni correction,
models are significant if the p-value is smaller than 0.0002 (i.e.,
0.05/224).

2.4.1.2. Multiple texture measures. We fitted multiple regres-
sion models to evaluate the contribution of several texture
measures in predicting species richness. For each of the eight
window sizes, we first fitted a full model that contained the 27
possible texture measures (i.e., mean of the 13 measures
(excludes ICM2) and standard deviation of the 14 measures).
We also fitted a null model with the intercept only. We applied a
stepwise selection algorithm starting with the null model, with a



Fig. 5. Relationship between species richness and standard deviation of A) standard deviation in a 51×51 moving window, B) sum of squares variance in an 81×81
moving window, C) information measure of correlation 1 in a 31×31 moving window, D) mean in a 15×15 moving window and E) information measure of correlation
2 in a 31×31 moving window.
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p-cutoff of 0.05 (Venables & Ripley, 2002). Specifying a null
model as a starting point is more conservative than the usual
method of starting with the full model. Using this method
avoids some of the problems related to model over-fitting that
could occur given the high correlations between the covariates
present in the full model. The independent effect of each
variable included in the final models was calculated using
hierarchical partitioning (Chevan & Sutherland, 1991). We used
hierarchical partitioning because we wanted to evaluate the
relative importance of each texture measure retained after the
stepwise regression for explaining bird species richness. The
independent contribution of a given texture measure to explain
variation in species richness is based on goodness of fit mea-
sures (i.e., R2 in this case) calculated for all possible combi-
nations of the texture measures that are retained after stepwise
regression.

2.4.2. Inclusion of elevation and habitat type
We fitted a model that included habitat class alone as a

predictor of species richness, as well as a second model that
included habitat and different measures of texture from the
multiple regression models. We compared those two multiple



Table 6
Comparison of the regression models with habitat type alone, multiple textures,
and habitat type plus multiple textures as predictors of bird species richness

Model Adjusted
R2

AICc p-
value

Richness ∼ habitat 71.21 224.94 –
Richness ∼ mean of SSV⁎31× 31+standard deviation
of SD31×31

61.78 234.26 –

Richness ∼ mean of SSV31×31+standard deviation
of SD31×31+habitat

76.28 218.32 0.015

The p-value is from the F-test comparing the model with habitat and texture to
the model with habitat only.
⁎ SD = standard deviation, SSV = sum of square variance.
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regression models using an F-test. Also, because elevation
gradient influences patterns of bird species richness (Rahbek,
1997), we included elevation variables in the best univariate and
multiple regression models resulting from the aforementioned
steps. Four elevation variables were calculated for each plot
from a digital elevation model (DEM) with a 10 meter
resolution: coefficient of variation (CV), mean, minimum and
maximum elevation. The coefficient of variation is defined as
the standard deviation divided by the mean.

3. Results

3.1. Descriptive statistics

Texture measures were highly variable among sites. Image
texture also differed among the seven main habitat types
identified from the classified image (Fig. 4). In general, texture
increased from grasslands to shrublands to pinyon–juniper
habitat.

Some of the texture measures were highly correlated
(Table 2). For the 3×3 window size, nearly 25% of all possible
pairwise comparisons had a positive correlation above 0.80, and
14% a negative correlation below −0.80. Note that the mean of
information measure of correlation 2 did not appear in this
correlation table because its value was equal to 0 for all plots.
There was also high correlation between textures measured at
different window sizes (Table 3). All the correlation coefficients
were highly significant (pb0.001), but generally decreased as the
difference between the size of the moving windows increased.

3.2. Relationship between image texture and species richness

3.2.1. Single measure of texture
First-order texture measures were all significant predictors of

species richness except for the meanM (Table 4) (subscripts
indicate themean (M) texture or the standard deviation (STDV) of
Table 5
Results obtained from the linear regression models relating species richness to mult

Window
Size

Intercept Model parameters

Mean Standard

CON ICM1 SSV COR

3×3 −541.27⁎,† −167.41⁎
(11)

7×7 13.68⁎⁎⁎ −0.01⁎⁎ (21)
15×15 4.67 94.77⁎⁎ (
21×21 13.81⁎⁎⁎ −0.01 ⁎⁎ (22)
31×31 14.18⁎⁎⁎ −0.01⁎ (19)
51×51 15.43⁎⁎⁎ −0.004⁎ (11)
81×81 15.18⁎⁎⁎

101×101 15.41⁎⁎⁎

Values represent the coefficient of each parameter included in the final model after s
variable inclusion. The numbers in parentheses indicate the percentage of independe
partitioning method. The last two columns represent the AICc and adjusted R2 valu
⁎ AVG = mean, CON = contrast, COR = correlation, DIS = dissimilarity, ICM1 = info
variance.
† Significance: b0.0001= ‘⁎⁎⁎’; 0.001= ‘⁎⁎’; 0.01= ‘⁎’ 0.05 ‘a’ 0.1.
texture). Therewas a positive and significant relationship between
species richness and second-order measures of texture such as the
sum of squares varianceSTDV, and the information measures of
correlation 1STDVand 2STDV. There was no significant model for
the inverse difference momentSTDV. Models relating species
richness to mean contrast, dissimilarity, and inverse difference
moment were significant but had low R2.

Manywindow sizes provided similar fit for a givenmeasure of
texture (Table 4). For example, a 51×51 window size provided
the best model for first-order standard deviationSTDV (AICc
weight=0.36), but windows 31×31 and 81×81 gave similar
good fits, as shown by their similar AICc weights (0.26 and 0.20
respectively). Only for a few measures was there a strong support
for a given window size; for example, a 15×15 window for the
rangeSTDV, the meanSTDV, and the maximumM. For the other first-
order texture measures, there were always at least two or three
window sizes producing similar model fits.

Among the first-order texture measures, the first-order
standard deviationSTDV was the best predictor of species
richness (Table 4). This measure alone explained 57% of the
variability in species richness, followed by the meanSTDV, which
explained 49% of the variation. Overall, standard deviation as a
summary statistic for first-order texture measures gave better
iple measures of image texture at a given window size

AICc Adj.
R2

deviation

DIS AVG SD SSV

8.49⁎⁎⁎

(54)
−0.11⁎⁎⁎
(35)

244.97 52.63

0.94⁎⁎⁎ (79) 242.34 53.89
30) 0.62⁎⁎⁎ (70) 236.13 58.29

3.71⁎⁎⁎ (78) 234.04 62.16
3.46⁎⁎⁎ (81) 234.46 61.78
3.00⁎⁎⁎ (89) 236.37 60
2.49⁎⁎⁎ (100) 239.48 55.48
2.50⁎⁎(100) 240.45 54.44

tepwise regression. A conservative p-cutoff of 0.05 was used as a threshold for
nt effect that each variable have on the response calculated with the hierarchical
es for the final models.
rmation measure of correlation 1, SD = standard deviation, SSV = sum of square
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results than the mean, as shown by smaller overall AICc values
and higher adjusted R2.

The second-order texture measures that best predicted
species richness were the sum of squares varianceSTDV,
followed by the information measure of correlation 1 and
2STDV. These measures explained 54, 54, and 44% of the
variation in species richness respectively. As with the first-order
measures, the standard deviation of second-order texture
measures was in general better than the mean as indicated by
the lower AICc values and higher adjusted R2.

Overall, the five best predictors of species richness from
these univariate models were: 1) first-order standard deviation-
STDV, 2) sum of squares varianceSTDV, 3) information measure
of correlation 1STDV, 4) meanSTDV, and 5) information measure
of correlation 2STDV (Fig. 5). There was a positive relationship
between the aforementioned measures and species richness.
These variables explained 58, 55, 55, 50, and 45% respectively
of the variability in species richness (Table 4). All of those
models remained significant after Bonferonni correction.

3.2.2. Multiple regression models
Multiple measures of texture at a given scale of analysis

explained a higher proportion of the variability in bird species
Table 7
Results from multiple regression models combining elevation data with the five bes

Model
suite

Variable (txt) AICc univariate
regression

Adj. R2 simple
regression

Variable
(elev.)

1 – 272.19 (intercept
only)

– CV

– – Max
– – Mean
– – Min

2 Standard deviation of
SD*** 51×5

238.34 56.67 CV
Mean
Min
Max

3 Standard deviation of
SSV 81×81

240.73 54.13 CV
Max
Mean
Min

4 Standard deviation of
ICM1 31×31

241.21 53.61 CV
Max
Mean
Min

5 Standard deviation of
AVG 15×15

245.50 48.62 CV
max
mean
min

6 Standard deviation of
ICM2 31×31

249.15 43.95 CV
max
mean
min

Elevation variables are ranked in decreasing order based on the adjusted R2 values fo
compared with univariate linear regression containing one of the five best measures
models are in bold. P-value corresponds to results from the likelihood-ratio test com
† AICc and adjusted R2 of the univariate model including texture only.
†† Model 1 is for elevation only.
⁎ AICc and adjusted R2 of the model including texture and elevation covariate.
⁎⁎ Diff AICc = AICc univariate regression−AICc multiple regression.
⁎⁎⁎ SD = standard deviation, SSV = sum of squares variance, ICM1 = information me
CV = coefficient of variation.
richness than single measures (Table 5), with the exception of
window sizes 81×81 and 101×101, where the best model
selected with stepwise selection was the univariate one. Standard
deviationSTDV was included in five of the models and accounted
for between 78 and 89% of the explained variation in species
richness, using the hierarchical partitioning approach. Sum of
square varianceM was included in three of the models, and
independently accounted for approximately 20% of the variabil-
ity in species richness. For the 21×21 moving window, 62% of
the variability was explained by two variables (Table 5) as
opposed to 52% explained with the standard deviationSTDValone.
For all listed best models, there were always other possible
models giving similar adjusted R2 values with different
combination of variables. For example, for a 21×21 moving
window, five other two variable models could provide an
adjusted R2 value between 58% and 62%. This suggests that
some variables are interchangeable with little change in the
model accuracy due to high correlation between variables.

3.3. Elevation and habitat

Habitat alone explained 71% of the variability in species
richness (Table 6). This model was significantly better than the
t predictors of species richness from Table 4

AICc texture+
elevation

Adjusted R2 texture+
elevation

AICc
w

p-value Diff
AICc ⁎⁎

Diff
R2

250.67 41.88 0.99 b0.001 21.51 –

261.5 24.81 0.004 b0.001 10.69 –
262.84 22.36 0.002 b0.001 9.35 –
263.96 20.24 0.001 b0.001 8.23 –
233.16 62.95 0.43 0.01 5.18 6.28
234.80 61.47 0.19 0.02 3.54 4.80
235.14 61.16 0.16 0.02 3.20 4.49
234.46 61.78 0.22 0.02 3.88 5.11
235.69 60.65 0.57 0.01 5.04 6.52
238.08 58.34 0.17 0.04 2.65 4.21
238.44 57.98 0.14 0.04 2.29 3.85
238.78 57.64 0.12 0.03 1.95 3.51
239.11 57.30 0.51 0.04 2.10 3.69
241.13 55.20 0.19 0.13 0.08 1.59
241.41 54.90 0.16 0.15 −0.20 1.29
241.68 54.61 0.14 0.18 −0.47 1.00
242.68 53.51 0.31 0.03 2.82 4.89
242.96 53.20 0.27 0.03 2.54 4.58
243.24 52.89 0.23 0.04 2.26 4.27
243.54 52.55 0.20 0.04 1.96 3.93
238.96 57.45 0.54 b0.001 10.19 13.50
240.92 55.42 0.20 b0.001 8.23 11.47
241.57 54.73 0.15 b0.001 7.58 10.78
242.13 54.13 0.11 b0.001 7.02 10.18

r each suite. Multiple regression models including elevation and texture data are
of texture only. The elevation variables that most improved the univariate linear
paring the multiple versus the univariate linear regression models.

asure of correlation, AVG =mean, ICM2 = information measure of correlation 2,
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model containing the intercept only (p-valueb0.001). The
inclusion of multiple measures of texture from the best multiple
regression model at the 31×31 window size significantly
improve this model, increasing explanatory power of the model
to 76% of the variability in bird species richness. The addition
of texture measures at other window sizes from the best multiple
regression models (Table 5) did not significantly improve the
model with habitat alone, but the p-values were close to 0.05 in
some cases (e.g., 0.06 at the 21×21 moving window size).
Elevation alone explained between 20 and 42% of the variation
in species richness (Table 7). The elevation variable that best
predicted species richness by itself was CV, with an AICc
weight of 0.99. Adding CV significantly improved the
univariate models containing single measures of texture.
Mean elevation followed CV of elevation in improving the
univariate models based on standard deviation of first-order
measures. Maximum elevation followed CV of elevation in
improving all other univariate models. Up to 63% of the
variability in species richness was explained by a single
measure of image texture (e.g., first-order standard deviation-
STDV) plus CV of elevation (Table 7). Only one measure of
texture remained significant after inclusion of CVof elevation in
the multiple regression models from Table 5, with the exception
of the 15×15 window size. In that case, the adjusted R2

increased from 58% to 62% with the inclusion of CV of
elevation in the model. The addition of elevation did not
significantly improve the multiple regression models.

4. Discussion

We found strong relationships between measures of image
texture and bird species richness, providing evidence that
important habitat features can be differentiated by surrogate
measures such as image texture (Wulder et al., 1998). There was
a particularly strong positive relationship between species
richness and both first-order standard deviation and second-
order variance. These two measures are highly correlated, and
both represent a measure of vegetation spatial heterogeneity
(Baraldi & Parmiggiani, 1995). Our results agree with previous
work in Maine by Hepinstall and Sader (1997), where variance
of image texture contributed to predict bird species associated
with high habitat heterogeneity.

The standard deviation summary statistic of a number of
texture measures (especially first-order standard deviation and
sum of squares variance) was more strongly related to species
richness than the mean of these texture measures. The standard
deviation of texture measures at the plot level characterizes
broad-scale variability in habitat structure. The positive
relationship between the plot-level standard deviation of image
texture and species richness provides support for the theory that
habitat heterogeneity determines species richness and can be
characterized at multiple scales (Noss, 1990). Habitats with a
large amount of heterogeneity in their spectral signature at the
scales of both the moving window and the plot thus appear to
satisfy the life-history requirements of more species (i.e., higher
number of available niches). Because our measures described
the variability of the vegetation among and within habitat types
these results suggest that image texture analysis can predict
avian species richness well in this ecosystem.

We did not find a consistent pattern regarding which window
size best predicts species richness for several possible reasons.
First, the species present in this ecosystem occupy territories of
varying sizes which may blur the effect of the scale of analysis
for determining species richness. For example, the loggerhead
shrike (Lanius ludovicianus) defends larger territories than
other passerine birds of similar body size; territory size varies
depending on the geographic location, but may range from 3 to
25 ha (Yosef, 1996). In contrast, the black-throated sparrow
(Amphispiza bilineata) defends much smaller territories which
may range from 0.89 to 2.36 ha in New Mexico (Johnson et al.,
2002). The lack of a single best window size may also be due to
the fact that the spectrum of window sizes chosen does not
provide distinct information, as shown by the high correlation of
texture across window sizes. This suggests that further work
should be conducted to evaluate the contribution of texture
calculated in more “extreme” window sizes in explaining
species richness, or to conduct similar studies in landscapes
where texture varies more across scales. Also, since birds may
respond to habitat features beyond their home range, one could
consider calculating image texture to include areas outside the
plot. In this study, however, we purposely chose to calculate
texture uniquely at the plot level to understand the effect of
within-plot structural variability on bird species richness.

Habitat type from a Landsat image classification was a strong
predictor of species richness. In McGregor Range, Pidgeon et al.
(2001) found that species richness was very different among
habitat types, significantly declining from pinyon–juniper to
shrublands to grasslands, which corresponds to a decline in
habitat spatial heterogeneity. Adding multiple image texture
measures to a univariate habitat type model increased predictive
power, capturing 76% of variability in species richness. This
suggests that fine-scale habitat variability is important in
determining patterns of species richness in our study area. The
strong relationship between species richness and image texture
suggests also that image texture analysis is suitable for
characterizing differences in habitat heterogeneity that determine
spatial patterns of species richness across the landscape.

We found a positive relationship between the four elevation
variables and species richness, in agreement with previous
research regarding the importance of elevation gradient in
determining bird species richness (Hawkins, 1999; Rahbek,
1997). The coefficient of variation in elevation was particularly
strong in predicting species richness. Over the spatial extent
considered (i.e., 108 ha) variability in elevation may promote
variability in available resources and diversity of niches for
breeding bird species.

Our results show that a univariate first-order measure such as
standard deviation calculated from DOQQs predicts species
richness well. This is an advantage because first-order texture
measures are relatively fast to compute, as opposed to second-
order measures which require more computing-intensive
algorithms.

However, the multiple regression models do suggest that
second-order measures also help to explain variability in species
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richness. Second-order measures take into account the spatial
relationships between pixel values, which may be an important
aspect of bird habitat quality. For example, the distribution of
escape cover across an area may influence species richness.
This spatial aspect of habitat suitability can only be reflected in
second-order texture measures.

Our work clearly shows strong correlation between image
texture and species richness. At this point, however, we can
only speculate on the ecological significance of this relation-
ship, and future work is needed to understand the relevance of
complex texture measures (e.g., second-order measures) for
determining species richness. From our results, we can
hypothesize that, at the scale of the moving window, high
first-order standard deviation or sum of squares variance
represents a heterogeneous distribution of plants. This high-
level of local variability in plant composition and/or structure
can support a larger number of bird species (Rotenberry,
1985).

Our results suggest that image texture can act as surrogate for
habitat structure, and is a promising tool for predicting patterns
of species richness. This approach represents a cost-effective
way of mapping habitat heterogeneity and species richness
compared to the traditional method of classifying images. Most
texture measures can be easily calculated and algorithms to do
so are an integral part of most remote sensing software.

Image texture has potential utility far beyond predicting
species richness in semi-arid ecosystems. It may be useful to
model species richness in forest ecosystems, where it can
capture within-forest variability, as shown by Hepinstall and
Sader's (1997) study in Maine. Quantifying landscape hetero-
geneity based on continuous data is one of the main challenges
of landscape ecologists today (Turner, 2005); image texture can
be used in accomplishing this task.

5. Conclusion

Mapping broad-scale patterns of species richness is a major
challenge. There are drawbacks to using traditional remote
sensing techniques based on classified images in ecosystems
where the boundary between some habitat types is not clearly
defined, as is the case in the northern Chihuahuan Desert. Our
study describes a novel application of image texture analysis to
mapping and understanding species richness patterns in semi-
arid ecosystems. Three main conclusions can be drawn from our
study. First, both first- and second-order texture measures were
strong predictors of species richness and the relationships were
robust across window sizes. Second, environmental factors such
as coefficient of variation in elevation and habitat type
significantly improved the models when used in conjunction
with texture measures. Finally, models that included multiple
texture measures explained more variability in species richness
than univariate models. Our results suggest that image texture
offers a promising, cost-effective metric for mapping species
richness in semi-arid ecosystems. Future work is needed to
evaluate the possibility of extending these results to other
ecosystems, and using high-resolution satellite imagery for
texture calculation.
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