The wildland-urban interface (WUI) is the area in which human settlements adjoin or intermix with ecosystems. Although research on the WUI has been focused on wildfire risk to settlements, we argue here that there is a need to quantify the extent of areas in which human settlements interact with adjoining ecosystems, regardless of their ability to support fire spread. Besides wildfires, human settlements affect neighboring ecosystems through biotic processes, including exotic species introduction, wildlife subsidization, disease transfer, landcover conversion, fragmentation, and habitat loss. The effects of WUI settlements on ecosystems are two tiered, starting with habitat modification and fragmentation and progressing to various diffusion processes in which direct and indirect effects of anthropogenic activities spread into neighboring ecosystems at varying scales. New scientific, management, and policy tools are needed in order to better understand the WUI as a unique social-ecological zone and to mitigate negative consequences of its continued growth.
File: BarMassada_etal_2014_BioScience.pdf
This is a publication uploaded with a php script
Conservation plans are a common management tool, but are rarely evaluated for their influence on conservation actions. We assessed four statewide conservation plans and 371 local land protection projects developed by a state land management agency in the United States. We asked whether completion of statewide plans and approval of local projects were associated with changes in the amount, location, and landcover composition of subsequently protected lands. We found a weak relationship between statewide plans and land protection actions. Completion of two of four plans was associated with an increase in land protection statewide or within plan boundaries. However, 58% of lands protected within 20 years of plan completion were outside plan boundaries. Further, the proportion of statewide land protection activity focused inside plan boundaries was lower or not different after plan completion for three of four plans. Conversely, for >90% of local land protection projects, most land protection occurred after formal project approval compared to before, with much of that activity occurring almost immediately. Forests and wetlands were protected more often than planned, while pasture and crop lands were protected less often than planned. We suggest that conservation plans are most likely to influence land protection actions when dependable, multi-year funding for land protection is present, when public, institutional, and political support for implementation are strong; and when agencies commit to an implementation strategy that links broad-scale plans to specific, local land protection projects and is actionable within the framework of existing administrative rules governing agency land protection.
File: Carter_etal_2014_BiologicalConservation.pdf
This is a publication uploaded with a php script
Land management agencies frequently develop plans to identify future conservation needs and priorities. Creation and implementation of these plans is often required to maintain funding eligibility. Agency conservation plans are typically expert-based and identify large numbers of priority areas based primarily on biological data. As conservation dollars are limited, the challenge is to implement these plans in a manner that is effective, efficient, and considers future threats. Our goal was to improve the utility of existing, expert- and biologically-based plans using a flexible approach for incorporating spatial data on vulnerability to and threat from housing development. We examined two conservation plans for the state of Wisconsin in the United States and related them to current and projected future housing development, a key cause of habitat loss and degradation. Most (54-73%) priority areas were highly vulnerable to future threat, and 18% were already highly threatened by housing development. Existing conservation investments were highly threatened in 8-9% of priority areas, and 25-34% of priority areas were highly vulnerable and highly threatened, meriting immediate conservation attention. Conversely, low threat levels in 20-26% of priority areas may allow time for new, large-scale conservation initiatives to succeed. Our results highlight that vulnerability to and threat from existing and future housing development vary greatly among expert- and biologically-based priority areas. The framework presented here can thus improve the utility of existing plans by helping to target, schedule, and tailor actions to minimize biodiversity loss in highly threatened areas, maximize biodiversity gains, and protect existing conservation investments.
File: Carter_etal_LandscapeUrbanPlanning_2014.pdf
This is a publication uploaded with a php script
Old-growth forests around the world are vanishing rapidly and have been lost almost completely from the European temperate forest region. Poor management practices, often triggered by socioeconomic and institutional change, are the main causes of loss. Recent trends in old-growth forest cover in Romania, where some of the last remaining tracts of these forests within Europe are located, are revealed by satellite image analysis. Forest cover declined by 1.3 % from 2000 to 2010. Romania's protected area network has been expanded substantially since the country's accession to the European Union in 2007, and most of the remaining old-growth forests now are located within protected areas. Surprisingly though, 72% of the old-growth forest disturbances are found within protected areas, highlighting the threats still facing these forests. It appears that logging in old-growth forests is, at least in part, related to institutional reforms, insuf?cient protection and ownership changes since the collapse of communism in 1989. The majority of harvesting activities in old-growth forest areas are in accordance with the law. Without improvements to their governance, the future of Romania's old-growth forests and the important
File: Knorn_EnvCons_2013_0.pdf
This is a publication uploaded with a php script
A major challenge for biodiversity conservation is to mitigate the effects of future environmental change, such as land use, in important areas for biodiversity conservation. In the United States, recent conservation efforts by The Nature Conservancy and partners have identified and mapped the nation's Areas of Biodiversity Significance (ABS), representing the best remaining habitats for the full diversity of native species and ecosystems, and thus the most important and suitable areas for the conservation of native biodiversity. Our goal was to understand the potential consequences of future land use changes on the nation's ABS, and identify regions where ABS are likely to be threatened due to future land use expansion. For this, we used an econometric-based model to forecast land use changes between 2001 and 2051 across the conterminous U.S. under alternative scenarios of future land use change. Our model predicted a total of 100,000 to 160,000 km2 of natural habitats within ABS replaced by urban, crop and pasture expansion depending on the scenario (5% to 8% habitat loss across the conterminous U.S.), with some regions experiencing up to 30% habitat loss. The majority of the most threatened ABS were located in the Eastern half of the country. Results for our different scenarios were generally fairly consistent, but some regions exhibited notable difference from the baseline under specific policies and changes in commodity prices. Overall, our study suggests that key areas for conserving United States' biodiversity are likely threatened by future land use change, and efforts trying to preserve the ecological and conservation values of ABS will need to address the potential intensification of human land uses.
File: Martinuzzi_Ecosphere_2013.pdf
This is a publication uploaded with a php script
Over the past 60 years, housing growth has outpaced population growth in the United States. Conservationists are concerned about the far-reaching environmental impacts of housing development, particularly in rural areas. We use clustering analysis to examine the pattern and distribution of housing development since 1940 in and around the Northern Forest, a heavily forested region with high amenity and recreation use in the Northeastern United States. We find that both proximity to urban areas and an abundance of natural amenities are associated with housing growth at the neighborhood level in this region. In the 1970s, counterurbanization led to higher rates of growth across rural areas. The Northern Forest now has extensive interface between forest vegetation and residential development, which has the potential to profoundly alter the ecological and social benefits of these forests.
File: Mockrin_etal_2013.pdf
This is a publication uploaded with a php script
Biodiversity conservation requires prioritization to be effective. Biodiversity hotspots and conservation planning identify where to focus conservation efforts, but it is unclear when conservation is most successful. Our goals were to: (a) investigate if hot moments for conservation occur, (b) calculate how important and prevalent they are, and (c) discuss what may catalyze hot moments for conservation. We analyzed the worldwide network of protected areas since inception, analyzing both all countries, and those 35 countries that contained at least 1% of either the total count or the total area protected globally. The evidence for hot moments for conservation was very strong. Among all countries, 44% protected more than half of their protected area in 1 year, and 61% did so in one 5-year period. The 35 countries that contain most of the protected area globally (77%) protected 23% and 49%, respectively, within 1 or 5 years. Hot moments often coincided with societal upheaval such as the collapse of the USSR or the end of colonialism. Conservationists need to account for hot moments for conservation to be most effective
File: Radeloff_etal_2013_ConsLetters.pdf
This is a publication uploaded with a php script
Land-use and land-cover change (LULCC) is the main cause of the global biodiversity crisis and protected areas are critical to prevent habitat loss. Rapid changes in institutional and socio-economic conditions, such as the collapse of the former Soviet Union in 1991, often trigger widespread LULCC. Yet, it is unclear how effective protected areas are in safeguarding habitat within them during such periods of rapid LULCC. Our goal here was to map changes in forest cover and agricultural lands from 1984 to 2010 in order to assess the effectiveness of two strictly protected areas, Oksky and Mordovsky State Nature Reserves, in temperate European Russia. We analyzed dense time series of Landsat images for three Landsat footprints and applied a support vector machine classification and trajectory-based change detection to map forest disturbance. We then used matching statistics to quantify the effectiveness of the protected areas. Our analyses highlighted considerable post-Soviet LULCC in European Russia. The LULCC maps revealed disturbances on 5.02% of the total forest area, with strongly declining disturbance rates in post-Soviet times. We also found that 39.89% of the agricultural land used in 1988 was abandoned after 1991, leading to widespread forest regrowth. Oksky and Mordovsky State Nature Reserves had a significantly lower probability of forest disturbance (? 0.1 to ? 3.5% lower) in comparison to their surrounding areas. This suggests that protected areas were relatively effective in limiting human-induced forest disturbance in European Russia, despite lower levels of control and an eroding infrastructure for nature protection. Moreover, we found drastic land-cover changes, particularly forest regrowth, in the surroundings of these protected areas, highlighting conservation opportunities. Protected areas can play a key role in biodiversity conservation during periods of rapid LULCC, and remote sensing coupled with matching statistics provide important tools for monitoring the success and failure of conservation efforts.
File: Sieber_etal_2013_RSE.pdf
This is a publication uploaded with a php script
California oak savanna is a habitat of sparse tree canopy that extends from northern Baja California to southern British Columbia and is under threat from land-use pressures such as conversion to agriculture, overgrazing, urban development, and fire suppression. Bird-conservation plans have been drafted for the region's oak woodlands. Yet it is unclear whether birds use California oak savanna at different frequencies than they do neighboring oak habitats. In the foothills of the central and northern Sierra Nevada, California, we explored patterns of avian community structure and habitat occupancy in four habitats: blue oak (Quercus douglasii) savanna with a well-developed grass and forb layer, blue oak savanna with a well-developed shrub layer, and two habitats with a denser canopy, blue oak woodland, and montane hardwood. Additionally, we assessed the effect of habitat characteristics on avian community structure and occupancy. Avian communities were uniquely grouped among the four habitats. Five species of management and conservation concern-the Western Kingbird (Tyrannus verticalis), Western Bluebird (Sialia mexicana), Lark Sparrow (Chondestes grammacus), Western Meadowlark (Sturnella neglecta), and Bullock's Oriole (Icterus bullockii)-were predicted to occupy oak savanna habitats at frequencies higher than in oak woodland or montane hardwood. Shrub cover was the most influential habitat characteristic shaping the avian community and was negatively associated with occupancy of the five savanna-affiliated birds. The distinctive structure and occupancy patterns observed for species of concern in California oak savanna suggest that birds perceive this as unique habitat, highlighting the need for its conservation.
File: Wood_etal_Condor2013.pdf
This is a publication uploaded with a php script
Identifying and protecting ''keystone structures'' is essential to maintain biodiversity in an increasingly human-dominated world. Sacred forests, i.e. natural areas protected by local people for cultural or religious regions, may be keystone structures for forest birds in the Greater Himalayas, but there is limited understanding of their use by bird communities. We surveyed birds and their habitat in and adjacent to six Tibetan sacred forests in northwest Yunnan China, a biodiversity hotspot. Our goal was to understand the ecological and conservation role of these remnant forest patches for forest birds. We found that sacred forests supported a different bird community than the surrounding matrix, and had higher bird species richness at plot, patch, and landscape scales. While we encountered a homogeneous matrix bird community outside the scared forests, the sacred forests themselves exhibited high heterogeneity, and supported at least two distinct bird communities. While bird community composition was primarily driven by the vegetation vertical structure, plots with the largest-diameter trees and native bamboo groves had the highest bird diversity, indicating that protecting forest ecosystems with old-growth characteristics is important for Himalayan forest birds. Finally, we found an increased bird use of the sacred forests and their edges during 2010, a severe drought year in Yunnan, indicating that sacred forests may serve as refuges during extreme weather years. Our results strongly indicate that sacred forests represent an important opportunity for Himalayan bird conservation because they protect a variety of habitat niches and increase bird diversity at multiple spatial scales.
File: Brandt-etal-BioCons-2013.pdf
This is a publication uploaded with a php script