Posted 09/21/23
Habitat selection in birds involves innate and learned behavioral decisions made by individuals to select home range, habitat, and foraging sites. This hierarchical process reflects scale-dependent responses to their habitat and environmental factors, vital for understanding species ecological preferences, behavior, and conservation needs. Akash Anand is assessing scale-dependent behavioral responses of birds to their habitat using Dynamic Habitat Indices (DHIs) and deep learning models, and studying the variations across different functional traits, guilds, and taxonomic groupings.
Habitat selection is a fundamental behavior of species that shapes a wide range of ecological processes, including species distribution, abundance, nutrient transfer, and tropic dynamics. The study of habitat selection is important to understand the interaction between species and environment. But it is a multivariate and hierarchical process, in which species are distinctively affected by several factors at multiple spatial scales. Therefore, it is important to understand how species select their habitat, what are the important spatial scales, and how the habitat selection process varies for different species.
Hierarchical habitat selection in birds varies greatly by species due to their ecological niches and behaviors. For instance, the Northern Spotted Owl specializes in old-growth conifers for nesting, forages in mature forests, and prefers undisturbed landscapes for its home range. Conversely, the Kirtland’s Warbler prefers, early to mid-successional jack pine forests, growing on sandy soil for nesting, these forests provide the specific vegetation structure and insect abundance that are essential for their foraging needs. Studying habitat selection is therefore crucial for effective conservation and ecosystem management, as it provides insights into their ecological requirements and aids in preserving their populations and the overall health of ecosystems.
Despite notable advancements in the field, our understanding of the hierarchical aspects of habitat selection in birds remains limited. Habitat selection models typically rely on satellite data from a single sensor and scale, which limits their effectiveness in capturing spatial patterns of bird habitat.
Akash Anand is currently conducting a study aimed at modeling multiscale hierarchical habitat selection in birds and explaining the factors influencing individual species’ choices. His research investigates the crucial spatial scales for different species and identifies local environmental features that play a pivotal role in overall habitat selection decisions. To achieve this, he employs deep learning models to gain insights into the intricate interactions between species and their environments.
In conclusion, Akash’s research aims to determine the crucial spatial scales for individual species, providing valuable insights for conservationists and policymakers. Additionally, the findings will provide evidence of how the same species respond to varying environmental conditions and how their choices differ in different scenarios. This knowledge will inform more effective conservation and management strategies.
Story by Anand, Akash